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We study a network model of two conductance-based pacemaker neurons of differing natural fre-

quency, coupled with either mutual excitation or inhibition, and receiving shared random inhibitory

synaptic input. The networks may phase lock spike to spike for strong mutual coupling. But the shared

input can desynchronize the locked spike pairs by selectively eliminating the lagging spike or modulating

its timing with respect to the leading spike depending on their separation time window. Such loss of

synchrony is also found in a large network of sparsely coupled heterogeneous spiking neurons receiving

shared input.
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Phase locking or synchrony of oscillatory systems is a
ubiquitous phenomenon in physics [1,2], chemistry [3],
and biology [4,5]. The theory of weakly coupled oscillators
predicts that phase locking can arise from mutual interac-
tions among oscillators [6]. Phase locking is also facilitated
by a common external input [7,8] either with or without
weak mutual interactions. But the theory of weakly
coupled oscillators is strictly applicable only for oscillators
with similar natural frequencies [9]. In some brain struc-
tures, there are mutually-interconnected oscillatory neu-
rons with more frequency heterogeneity than allowed by
the theory of weakly coupled oscillators [10]. Oscillators
with substantially different natural frequencies may still
become phase locked if coupled strongly enough [11], but
the influence of common inputs to these strongly coupled
systems has not been fully explored [12]. We are specifi-
cally motivated by studies of the subthalamic nucleus
(STN) and globus pallidus (GP) which contain intercon-
necting oscillatory neurons that receive common inhibitory
inputs. These neurons are normally uncorrelated but be-
come strongly correlated in Parkinson’s disease [13]. In
this Letter we construct oscillating two-neuron network
models with different natural frequencies but that are phase
locked due to strong mutual interconnections. We show
that a common external inhibitory input can reduce or
abolish phase locking and decorrelate their firing. The
amount of decorrelation depends on the phase difference
between the spike times in the phase-locked state.

Our results are demonstrated with coupled two-neuron
networks that use three different models of varying com-
plexity: a detailed neuron model that reflects realistic
properties of the STN neurons including rebound currents,
a reduced three-variable model ðN þ KÞ derived from the
first model, and the generic Hodgkin-Huxley (HH) neuron
model, which was also used as a model of the GP neuron.
The results are also extended to a larger network of 10
sparsely coupled neurons. We used a shared external in-
hibitory input, because both the GP and STN receive strong
inhibitory inputs. Interconnections among neurons within
the STN network model are excitatory, whereas the GP

cells are coupled by inhibitory connections. Unlike
integrate-and-fire-type neuron models that may fail to
synchronize for strong coupling [14] or for common input
[7], our neuron pairs can display robust 1:1 phase locking
of spike times in the absence of external input. This kind of
1:1 phase locking is sometimes also called linear syn-
chrony [15,16] in studies of coupled chaotic oscillators.
Our study highlights the importance of the timing of the
arriving inputs in decorrelating the phase-locked state.
However, we confine our study to neuron models that are
periodic and are not chaotic.
We consider two coupled pacemaking model neurons at

dissimilar frequencies (!1;2) and affected by identical

synaptic noise. The current balance equations (with unit
membrane capacitance) are

_V1 ¼ I1 � I1g � gS2 ðV1 � EÞ � IinhðV1; tÞ;
_V2 ¼ I2 � I2g � gS1 ðV2 � EÞ � IinhðV2; tÞ;

where V1;2 are the membrane voltages. For mutual excita-

tion, E � Eexc ¼ 10 mV and g � gexc, and for mutual in-
hibition, E � Einh ¼ �85 mV and g � ginh. Ij is a steady

applied current. j ¼ 1, 2 is the index of the neuron. All the
three models were used with mutual excitation, and the HH
model was also used with mutual inhibition. For the real-

istic STN model, Ijg � IgðVj; nj; hj; rj; ½Ca�jÞ is a function
of Vj, potassium activation (nj), sodium inactivation (hj),

low-threshold calcium inactivation (rj), and calcium con-

centration (½Ca�j) variables. These two equations, along

with those for nj, hj, rj, and ½Ca�j, together describe the

coupled system [17]. For the HH model, Ijg � IjðVj;

mj; hj; njÞ, and the gating variables are given by standard

equations [19] at T ¼ 0 �C, Q10 ¼ 3ðT�6:3Þ=10. A transfor-
mation V ! �V � 60 was used, and EL was depolarized
from�49:387 mV to�17 mV to trigger pacemaking. The
NþK model is derived from the STN by setting rebound
(GT) and all other calcium dependent maximal conductan-

ces (GCa, GAHP) to zero, and thus Ijg � IjðVj; nj; hjÞ. The
conductance state variable S1;2 � SðV1;2; tÞ is noninstanta-
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neous and depends on the time history of V1;2 via a differ-

ential equation [20], and can range from 0, when the
membrane is near rest, to 1 during an action potential
[21]. This incorporates a mutual coupling time constant,
1=�. IinhðVj; tÞ is an inhibitory input current generated

from alpha function conductances timed at random but
identical Poisson process arrival times (ti, i ¼ 1; . . . )

with rate �inh: IinhðVj; tÞ ¼ Ginh

P
ti
t�ti
�inh

e1�½ðt�tiÞ=�inh� �
Hðt� tiÞ � ðVj � EinhÞ. Ginh ¼ 0–1 nS=�m2 for STN

and N þ K, and 0–1 mS=cm2 for the HH network, and
�inh ¼ 1–10 ms. A fourth order Runge-Kutta algorithm
with 1 �s time step was used to integrate up to 1000 s.
The spike time sequences (s1 and s2) of our networks,
when they were not driven, are 1:1 phase locked with spike
separation tw and thus fall in the (s1, s2) phase space on the
diagonal line s1 ¼ s2. The deviations from this linear syn-
chrony (also see [15] and references therein) due to shared
input are large and random. An asynchrony parameter that
measures the fraction of such deviating spike times is
defined: A ¼ 1� Nsync=Nmax, where Nsync is the number

of spike time pairs (one spike from each neuron) in a time
window tw, and Nmax ¼ maxfN1; N2g, where N1;2 are

spike counts of the two neurons. A ¼ 0 for the 1:1 phase-
locked state. For phase-locked states that have large tw [in
Fig. 3(b)], shorter separations also constitute deviations
from the coherent state. Thus an asynchrony measure

called inter spike interval (ISI) distance [22] defined as 1
T �

R
T
0

js1�s2j
maxfs1;s2g dt is used. The ISI distance quantifies the jitter

around the diagonal line, s1 ¼ s2. However, both these
measures give qualitatively similar results.

Figure 1(a) shows the results of two mutually excitatory
STN neurons that have very different intrinsic spike fre-
quencies. In the absence of external input, mutual coupling
that exceeds a critical level (g�exc) phase locks the spike
times of both the neurons in a 1:1 ratio. This causes A to
become 0 as the frequencies of both the cells become
identical. An example of the voltage time courses in this
state is shown in Fig. 1(a), top inset, left. When the external
inhibitory input was turned on [Fig. 1(a), top inset, right],
the spike times of both the cells became arrhythmic, and
the firing rates became different. The common input coun-
tered the effect of mutual coupling by decreasing the
number of the 1:1 phase-locked spike pairs. The enhanced
spike count resulted due to activation of a low-threshold
rebound calcium current (i.e., the T current). But the loss of
phase locking is not dependent on the T-current activation
(see results using the N þ K network below). The result of
the loss of the 1:1 phase locking between the spike times is
also seen as a finite nonzero value of A in the earlier phase-
locked regime (g > g�exc). For this network, frequency
heterogeneity is essential to elicit finite A. This is demon-
strated in Fig. 1(a), bottom inset. In the absence of input,
phase locking was achieved for a wide range of frequency
disparity. With inhibitory input, A became nonzero in this
region except when the frequencies were identical (I1 ¼

I2). The dependence of A on the input rate is shown in
Fig. 1(b) for all the two-neuron coupled model networks
with mutual excitation. In the absence of input (i.e., at
�inh ¼ 0), the networks were 1:1 phase locked (i.e., A ¼
0). At an input rate of 1 kHz, about 40% of the locked
spikes in the N þ K network, and more than 50% of the
locked spikes in the HH network, became unpaired. But the
STN network model exhibited frequency-dependent acti-
vation of its rebound current that led to a modulation of A.
The T current is most actively recruited in the slower
neuron between p1 and p3, and in the faster neuron be-
tween p2 and p4. Thus, the firing rate as a function of �inh

increased in both the neurons between p2 and p3, lead-
ing to an increasing A. Active recruitment in only one of
the cells led to enhancement of phase locking or reduction
in A.
The loss of 1:1 phase locking observed in theN þ K, the

HH, and the STN network (for �inh < p1, hence no signifi-
cant rebound spikes) emerges by selective elimination of
one of the spikes in otherwise phase-locked spike pairs [see
ISI histogram in Fig. 2(b) bottom inset]. Shared input
cannot desynchronize the locked state if the spike pair
separation tw ¼ 0. For small tw, a brief synaptic input is
needed for disruption of the locked state. tw is determined
by the dynamics of the synaptic coupling conductance
[SðVj; tÞ] and the coupling strength gexc. It increases with

frequency heterogeneity [Fig. 2(a)]. For the STN network,
empirically, tw � aðgexc � g�excÞ�b, where a ¼ 0:78, b ¼
0:44 away from the criticality (g�exc) , and a ¼ 1:3, b ¼ 0:2
near criticality. An inhibitory stimulus event preceding a
locked pair [Fig. 2(a) inset] may reduce the spike separa-
tion, but one or more events that are positioned appropri-
ately in a time window tp (smaller or bigger than tw) with

respect to, but preceding the onset of the excitatory post-
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FIG. 1 (color online). Emergence of asynchrony for shared
inhibition. (a) Coupled STN network. !1 ¼ 2:7 Hz (I1 ¼ 0)
and !2 ¼ 9:3 Hz (I2 ¼ 8 pA=�m2). Ginh ¼ 1 nS=�m2. g�exc ¼
0:4 nS=�m2. The top inset shows brief time courses at gexc ¼
0:5 nS=�m2. For the same conductance parameters, the effect of
frequency heterogeneity is shown in the bottom inset. (b) Fre-
quency dependence of A for the three networks: STN (Ginh ¼
1 nS=�m2, and three different values of gexc), N þ K (I1 ¼ 0,
I2 ¼ 8 pA=�m2, gexc ¼ 0:62 nS=�m2, Ginh ¼ 1 nS=�m2), and
HH (I1 ¼ 0, I2 ¼ 8 �A=cm2, gexc ¼ 0:2 mS=cm2, Ginh ¼
1 mS=cm2). p1; . . . ; p4 mark input frequencies at which A
changed its character in the STN network due to T-current
activation, and are described in the text (�inh ¼ 1 ms).
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synaptic conductance, can eliminate the stimulated spike in
the lagging neuron. A is a measure of the probability of
such a favorable window receiving one or more inhibitory
stimuli [1� P0ð�inh; tpÞ, where Pnð�; tÞ is the Poisson

probability density] that successfully eliminate the follow-
ing spike. Assuming a successful elimination of the sec-
ondary spike by one or more arriving inputs in a window,
and assuming tp � tw, we write A ¼ Qð1� e��inhtwÞ,
where Q is a constant that depends on the phase-locked
frequency. dA=d�inh ¼ Qtwe

��inhtw . Q was estimated nu-
merically from dA=d�inh. At Ginh ¼ 0:1 nS=�m2 and
tw ¼ 1:8 ms, Q ¼ 0:034. By using Q, and the numerically
evaluated dA=d�inh, we solved the above transcendental
equation for tw at several Ginh values, and plotted it as tp in

Fig. 2(b), in dots . A similar window for suppression of the
lagging spike is computed deterministically by using an
inhibitory conductance input preceding the phase-locked
spike pair, and is shown in Fig. 2(b) (thick solid line) for
comparison. Alternatively, A may be approximated. Such
an approximation even at large Ginh values well predicts
the growth of A [Fig. 1(b), STN, analytic] at small �inh:
A ¼ 1:02ð1� e�0:002�inhÞ. Using a similar approximation
for the HH network [Fig. 1(b), HH, analytic] yields A¼
1:8ð1�e�0:0026�inhÞ. For basal ganglia networks, values of
�inh are near 10 ms. Increasing �inh generally decreased the
firing rates in the models because the input turned increas-
ingly deterministic, and the asynchrony parameter showed
a moderate increment [Fig. 3(a)]. But the STN network
showed up to 80% loss of phase-locked spike pairs when
Ginh is reduced appropriately at long �inh such that the cells
could maintain high firing rates due to activated T current.
The modulation in A is similar in nature to that seen in
Fig. 1(b).

We now briefly discuss the behavior of mutually inhibi-
tory HH neurons [Fig. 3(b)] in response to common exter-

nal Poisson inhibition. Phase locking can now occur in
such networks with tw near the antiphase state. tw is
modified by the frequency heterogeneity. This phase dif-
ference between the spikes is either decreased or increased
by the occurrence of oncoming inhibitory synaptic con-
ductance events before or in between the phase-locked
spike pair. This increased the asynchrony as measured by
the ISI distance (defined earlier) with increasing �inh at fast
as well as slow synaptic time constants, 1=�. Finally, we
illustrate the manifestation of these two forms of asyn-
chrony in a larger network (N ¼ 10) of excitatory [STN,
all-to-all coupled; n ¼ 9; Fig. 4(a)] and inhibitory [HH,
sparse coupled; n ¼ 4; Fig. 4(b)] neurons. The current

balance equations are _Vj ¼ Ij � Ijg � g 1
n

PN
k¼1 MjkSk �

ðVj � EÞ � IinhðVj; tÞ, j ¼ 1; . . . ; 10. Mjj ¼ 0. Mjk ¼ 1,

if the presynaptic neuron k is connected to the postsynaptic
neuron j, and 0 otherwise. In both the networks, in the
absence of the input, the spike times were asynchronous for
weak coupling (see [23] for T-current induced clustering),
but strong mutual coupling above a critical level synchro-
nized the average firing rates of all the neurons to a
common frequency. When the shared inhibition is turned
on, the STN network neurons fired faster due to T-current
activation, and the HH network neurons fired slower. But
the average firing rates exhibited asynchrony by diverging
from the common locked frequency.
In contrast to the earlier studies on weakly coupled

oscillator theory, we showed that in strongly coupled het-
erogeneous networks, shared inhibition can lead to asyn-
chrony of spike times. Our simulations also revealed
similar role for shared excitation. Our results lead to the
possibility that modulating the synaptic input strength or
input frequency might lead to switches in the synchrony-
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FIG. 3 (color online). (a) Dependence of A on �inh. For STN
network �inh ¼ 100 Hz, gexc ¼ 0:5 nS=�m2. For HH network
Ginh ¼ 0:5 mS=cm2 and gexc ¼ 0:1 mS=cm2. I1 and I2 are as in
Fig. 1(b). 1=� ¼ 3 ms for both the networks. (b) Mutually
inhibitory network of two coupled HH neurons (I1 ¼ 0, I2 ¼
8 �A=cm2) displaying spike time asynchrony for inhibitory
input. At �inh ¼ 0, tw ¼ 7:8 for #1 and 9.6 ms for #2. Voltage
traces transitioning from phase-locked (�inh ¼ 0) to asynchro-
nous state for finite input rate are illustrated in the top inset. The
phase response curves corresponding to the two phase-locked
neurons are illustrated in the left inset, bottom. The right inset
shows the densities of spike pair separation in the asynchronous
state.
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FIG. 2. (a) Time window of spike separation in 1:1 phase-
locked state in the absence of extrinsic input for the coupled
STN, N þ K, and HH excitatory neuronal pairs as a function of
frequency heterogeneity (I1 is fixed at 4 pA=�m2 for STN and
N þ K, and at 4 �A=cm2 for the HH). The inset shows scenarios
of input events with respect to spike pair separation discussed in
the text. (b) Excitatory STN network. Predicted and computed
time windows (see text). The top inset shows the mechanism by
which oncoming inhibition suppressed a lagging spike. The
bottom inset shows the resultant interspike interval histogram
densities. (�inh ¼ 1 ms; gexc ¼ 0:5 nS=�m2.)
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asynchrony (or coherence-incoherence) transitions in
coupled oscillatory networks that receive coherent input.
It would be of interest to study the emergence of asyn-
chrony due to shared inputs when the phase-locked state is
affected by background noise [24] or if the oscillators
themselves behave chaotically [25]. In Parkinsonian net-
work models of deep brain stimulation, earlier studies
[26,27] relied on the network connectivity between differ-
ent brain nuclei to produce complex asynchronous pat-
terns. Our results suggest an alternative mechanism for
generating such asynchrony within each brain nucleus.
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FIG. 4. Emergence of asynchrony from coherent states in net-
works of N ¼ 10 excitatory all-to-all coupled STN (a) and
sparsely coupled inhibitory HH (b) neurons measured by average
spike rate as a function of mutual coupling without and with
shared inhibition. (a) Ij ¼ ðj� 1Þ10=9 pA=�m2, j ¼ 1; . . . ; N,

and Ginh ¼ 0:5 nS=�m2. (b) Inset shows Mij (with n ¼ 4); a

filled square represents a synaptic connection. Ij ¼
5þ ðj� 1Þ8=9 �A=cm2, j ¼ 1; . . . ; N, Ginh ¼ 0:1 mS=cm2.
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