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We present zero-temperature simulations for the single-particle density of states of the Coulomb glass.

Our results in three dimensions are consistent with the Efros and Shklovskii prediction for the density of

states. Finite-temperature Monte Carlo simulations show no sign of a thermodynamic glass transition

down to low temperatures, in disagreement with mean-field theory. Furthermore, the random-

displacement formulation of the model undergoes a transition into a distorted Wigner crystal for a

surprisingly broad range of the disorder strength.
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The Coulomb glass (CG) is the earliest paradigm for
understanding the effects of strong disorder in electronic
systems with long-ranged interactions. Among its applica-
tions are the space-energy correlations in transistors, the
magnetization-switched metal-insulator transitions in tun-
nel devices, the cotunneling magnetoresistance in ferro-
magnetic devices, the ambipolar gate effect, the huge
magnetoresistance in semiconductor stacks, and the trans-
parent refractory oxides, to name a few. In the CG, the
Coulomb interaction remains long ranged because the dis-
order localizes the electrons and thus impedes screening.
Therefore, the system forms its low-energy states by long-
range configurational changes and avalanches. After some
early approaches [1,2], Efros and Shklovskii (ES) argued
that the stability of the low-energy states against the long-
ranged single-particle dynamics requires the formation of a
soft ‘‘Coulomb gap’’ in the single-particle density of states
(DOS) of the form �ðEÞ � jEj� with � ¼ D� 1 as an
upper bound and where the energy E is measured from
the Fermi level [3], D being the space dimension. This
Coulomb gap leads to a typical variable range hopping

form of the low-temperature conductivity, i.e., �ðTÞ ¼
�0 exp½�ðT0=TÞ�1=2�, �0 and T0 constant.

There is considerable experimental evidence in support
of these predictions from transport measurements of �ðTÞ
[4–7], as well as from tunneling conductance measure-
ments of �ðEÞ [8–11]. However, subsequent theoretical
considerations arrived at an exponential form of the DOS
by considering multielectron ‘‘polaronic’’ processes:

�ðEÞ � exp½�ðE0=EÞ1=2� [12,13], throwing the status of
theoretical predictions for the DOS into question.

A large number of nonequilibrium glassy phenomena
have been observed in disordered electronic systems.
These include slow dynamics [14–17], aging, and memory
effects [18–20], as well as changes in the noise spectrum
[21]. However, the existence of a thermodynamic glass
transition cannot be directly surmised from glassy dynam-

ics. In fact, no well-defined thermodynamic glass transition
has been found in association with these phenomena to
date in three-dimensional (3D) systems.
These different theoretical predictions merged with the

insight of Pastor and Dobrosavljevic, who described a
disordered electron system with long-range interactions
using the replica-based theoretical framework of glass
physics [22,23]. Their work offered a unified platform to
analyze both the DOS and the glassy characteristics of
these systems. This programme was subsequently ex-
panded by the work of Müller, Ioffe, and Pankov who
included replica symmetry breaking technology into their
calculations [24–26]. All these studies concluded that—
within a mean-field approach—a soft Coulomb gap exists

in the single-particle DOS at T ¼ 0. Furthermore, for T �
Tc �W�1=2, where W is a measure of the disorder, the
system freezes into a ‘‘Coulomb glass’’ state. Note that the
Coulomb glass is analogous to a spin glass in a (random)
field [27] which is known to not order.
The Coulomb glass has attracted considerable attention

numerically as well. The initial work by Davies, Lee, and
Rice reported the observation of a soft gap, but the data
were not conclusive with respect to the detailed functional
form of the DOS [28]. Subsequent numerical studies rep-
resented the disorder either by random site energies (CG)
[29–34] or by random displacements (RD) between the
sites [35–40]. While the CG and RD models have different
symmetries (and thus possibly different universality
classes [41]), it has nevertheless been argued that they
both adequately capture the key aspects of the real elec-
tronic system [38]. Different studies of the DOS in 3D have
reported a DOS vanishing at the Fermi level with �ðEÞ �
jEj� with � ¼ 2:1–2:6 [29,30]. Even more surprising was
the claim of a strongly disorder-dependent exponent �
[38]. Furthermore, studies attempting to locate a transition
to a glassy state were only successful in the RD model
[36,38–40].
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The state of the field can be summarized as follows: A
soft gap in the DOS has been widely confirmed, but the
predicted ES exponent � ¼ D� 1 is consistent only with
experimental data, not with numerical simulations. A true
finite-temperature transition to a glassy state has numerical
support in the RD model but lacks evidence in the CG
model and in experiments.

Our results show that in the 3D CG model, � is close
to 2 and weakly disorder dependent [25], and we find
no signature of a finite-temperature glass transition.
Furthermore, in the RD model, the low-temperature order-
ing is indicative of a distorted Wigner crystal.

Model and numerical details.—The Coulomb glass
(CG) Hamiltonian is given by [3]

H CG ¼ 1

2

X
i�j

ðni � �Þ e2

�rij
ðnj � �Þ þX

i

ni"i; (1)

where ni 2 f0; 1g is the electron number at site i, � the
filling factor, and e2=�rij the Coulomb repulsion. The sites

lie on a three-dimensional lattice of size N ¼ L3, and the
electron number is coupled to Gaussian-distributed random
site energies "i with zero mean and standard deviation W,

i.e., P ð"iÞ ¼ ð2�W2Þ�1=2 expð�"2i =2W
2Þ. In the RD

model, instead of random site energies, the disorder is
represented by Gaussian-distributed random displacements

of the lattice sites with standard deviation
ffiffiffi
3

p
W. The DOS

is given by the disorder average of �ðEÞ ¼ ð1=NÞPi�ðE�
EiÞwith Ei ¼

P
j�iðnj � �Þðe2=�rijÞ þ "i the local single-

particle energy [3].
For the simulations, we use particle-conserving dynam-

ics and periodic boundary conditions. To cope with the
long-range Coulomb interactions, we perform a resumma-
tion technique in which we sum all interactions over peri-
odic images and renormalize the energy scales such that
the nearest-neighbor distance is a ¼ 1. To compute the
ground-state DOS (T ¼ 0), we use extremal optimization
[42]. For the CG model, we perform 219N updates and
study systems of up to N ¼ 143 sites in 3D for W ¼ 0:2
and 0:4 and average over 3000 disorder samples for L �
12 and 1800 (800) samples for L ¼ 14 for W ¼ 0:2 (W ¼
0:4). For the RD model, we study N ¼ 143 sites and
average over 100 disorder samples (fluctuations are small).
For the study at finite temperatures, we use exchange
Monte Carlo [43,44]. Equilibration is tested by a logarith-
mic data binning. Once the last three bins agree within
errors, the system is in thermal equilibrium. Simulation
parameters can be found in Table I.

Results for the density of states.—Figure 1 (top and
center panels) shows the DOS at T ¼ 0 for the 3D CG
model for two disorder strengths close to the Fermi level
(E ¼ 0) at half filling (� ¼ 1=2); the insets show the whole
functional shape. The data can be fit very well with a form
�jEj� with � ¼ 2:01ð2Þ ðL ¼ 14Þ for W ¼ 0:2 and � ¼
1:83ð3Þ ðL ¼ 14Þ for W ¼ 0:4 (restricted to jEj � 0:3),
which is close to the ES value of � � D� 1.

Figure 1 (bottom) shows the DOS of the RD model for
L ¼ 14. The DOS shows a pronounced double-peak, the
width of the peaks dependent onW. There is no sign of the
characteristic Coulomb gap shape; moreover, the peaks at
jEj � 1 are typical of a Wigner crystal (WC). Thus, the
DOS of the RD model is indicative of the formation of a
moderately distorted WC at T ¼ 0.
Results at finite temperature.—At half filling (� ¼ 1=2),

the ground state of the clean system (W ¼ 0) is a WC with
a bipartite charge pattern. For a WC, the DOS is expected
to be two delta functions, separated by a charge gap EWC.
The energy required to move a particle from a site on the
occupied sublattice to a site on the unoccupied sublattice is
EWC � 2 in units of e2=�a. Since the peaks of the DOS of
the CG are approximately centered around jEj � 1 (Fig. 1,
inset), it needs to be verified that the observed DOS is
indeed representative of a glassy phase and not only that of
a distortedWC. Therefore, we study the nature of the phase
at finite T by computing both an order parameter for a
glassy state,

qGL ¼ 4

N

XN
i¼1

ðn�i � 1=2Þðn�i � 1=2Þ; (2)

and an order parameter for the competing Wigner crystal

mWC ¼ 2

N

XN
i¼1

ð�1Þiðni � 1=2Þ: (3)

In Eq. (2), � and � refer to two copies of the system with
the same disorder [45]. If the system forms a Wigner
crystal, we expect ½hmWCi�av ! 1 for T � Tc, whereas if
the system freezes into a glass, we expect ½hqGLi�av ! 1

TABLE I. Top: Simulation parameters for the simulations of
the 3D Coulomb glass model with Gaussian disorder of strength
W at finite temperature. L is the system size, Nsa is the number of
disorder samples, Nsw is the number of equilibration sweeps,
Tmin is the lowest temperature, Tmax ¼ 0:455 the highest tem-
perature, and Nr the number temperatures used in the exchange
Monte Carlo method. Temperatures are measured in units of
e2=�a; a ¼ 1 being the lattice constant. Bottom: Parameters for
the 3D RD model simulations.

W L Nsa Nsw Tmin Nr

0.20 6 4290 218 0.030 27

0.20 10 388 218 0.030 27

0.20 14 251 218 0.083 17

0.40 6 4955 218 0.030 27

0.40 10 148 218 0.030 27

0.40 14 98 218 0.083 17

W L Nsa Nsw Tmin Nr

0.10 8 173 220 0.030 27

0.20 8 133 220 0.030 27

0.40 8 93 220 0.030 27

0.80 8 143 220 0.030 27
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and ½hmWCi�av ! 0 for T ! 0. Here, ½� � ��av denotes the
average over disorder and h� � �i is a thermal average.

To locate the putative glass transition, we compute the
two-point finite-size correlation length [46] given by

	GLðL; TÞ ¼ 1

2 sinðjkminj=2Þ
�


ð0Þ

ðkminÞ � 1

�
1=2

; (4)

where kmin ¼ ð2�=L; 0; 0Þ is the smallest nonzero wave
vector and 
ðkÞ is the Fourier transform of the suscepti-
bility 
 ¼ ½hq2GLi � hqGLi2�av. We use four replicas to

FIG. 1 (color online). Top: DOS for the 3D CG model forW ¼
0:20. The data are well fit by �ðEÞ � E�, � � 2 (dashed lines are
a guide to the eye) around the Fermi level. Center: Same as in the
top panel for W ¼ 0:40. The insets show the full DOS. Both
panels have the same horizontal range. Bottom: DOS for the 3D
RD model. For all W studied, the data show a bimodal structure
with peaks at jEj � 1 and a hard gap of size�2, in stark contrast
to the CG model.

FIG. 2 (color online). Top: Wigner crystal order parameter
½hm2

WCi�av and glass order parameter ½hq2GLi�av as a function of

temperature T for different disorder strengths W for the CG
model. In all cases, ½hm2

WCi�av � ½hq2GLi�av. Center: Finite-size
correlation length as a function of T for different disorder
strengths and system sizes for the CG model. The data show
no crossing, i.e., the absence of a thermodynamic transition for
the studied temperature range. Bottom: Wigner crystal order
parameter for the RD model (L ¼ 8) as a function of tempera-
ture for different W. For T & 0:1, which quantitatively agrees
with the critical temperatures estimated in Ref. [38], crystalline
order emerges.
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compute 
 to avoid biases. Because 	=L� X½L1=�ðT �
TcÞ�, a phase transition at Tc is signaled by the correlation
lengths for different L’s crossing at the same T ¼ Tc.

Figure 2 (top panel) shows the q2GLðTÞ andm2
WCðTÞ order

parameters as a function of temperature for different dis-
order strengths in the CGmodel. The glass order parameter
increases as the T ! 0, whereas the Wigner crystal order
parameter does not exhibit any ordering tendency, mWCðTÞ
remaining �40 (140) times smaller than qGLðTÞ for W ¼
0:2 (W ¼ 0:4) at T ¼ 0:08. Figure 2 (center panel) shows
the correlation length for the glass order parameter as a
function of T for the CG model. The data do not cross for
the studied temperatures, and thus, there is no sign of a
transition for T � 0:03, disagreeing with mean-field pre-
dictions [24,25]. The lack of a transition is mirrored by the
small correlation length and the proximity to the ground-
state energy (not shown).

In Fig. 2 (bottom panel), we show m2
WC for the RD

model for disorder strengths up to W ¼ 0:8 covering the
disorder range studied in Ref. [38]. For allW studied,m2

WC

rises noticeably (in contrast to the CG model). This further
underlines that—for the studied disorder range—the phase
transition in the RDmodel occurs into a surprisingly robust
distorted Wigner crystal phase.

Conclusions.—We have analyzed the Coulomb glass at
low and zero temperature and find that the gap exponent of
the density of states is close to � � D� 1 in 3D systems.
Furthermore, we find no evidence of a finite-temperature
transition into a CG phase in 3D forW ¼ 0:2 and 0.4. This
suggests that the CG in 3D is at or below its lower critical
dimension, which would explain the discrepancy with the
mean-field results predicting a finite transition tempera-
ture. Finally, we have shown that in a broad disorder range,
the random-displacement version of the CG model orders
into a distorted Wigner crystal and not into a glassy state.
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