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We propose an experiment to identify the potential existence of a spinon Fermi surface by looking for

oscillatory coupling between two ferromagnets via a spin liquid spacer. Three candidate spin liquids are

investigated, and it is found out that in all cases long period oscillations should be present, the period of

which would identify the Fermi wave vector of the spinon surface.
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In 1973, Anderson [1] proposed the possibility of a spin
liquid, a state where long range magnetic order is sup-
pressed by frustration, low dimensionality and/or quantum
fluctuations. In 1987, he resurrected this idea in the context
of high temperature cuprate superconductors [2]. The pro-
posed ground state was a so-called uniform resonating
valence bond (RVB) state which possesses a Fermi sur-
face for spin excitations. Although it turns out that the
undoped cuprates are antiferromagnets, the spin liquid
concept in the context of doped cuprates is a very active
field of study [3].

Frustration plays a major role in suppressing magnetic
order, and the original RVB idea was developed for a
triangular lattice. Since then, other frustrated lattices
have been identified, including pyrochlore, kagome, and
hyperkagome [4]. In the past few years, three candidate
S ¼ 1=2 spin liquids have been identified [5]: ��
ðBEDT� TTFÞ2Cu2ðCNÞ3 (distorted triangular lattice)
[6], ZnCu3ðOHÞ6Cl2 (kagome) [7], and Na4Ir3O8 (hyper-
kagome) [8]. All of these materials are insulating, have a
large Curie-Weiss temperature, and yet show no ordering
down to the lowest temperatures measured. In each case
[9–13], a uniform RVB state has been proposed as the
ground state with a resulting spinon Fermi surface. There
is indirect evidence for such a surface. The BEDT salt
exhibits a linear T specific heat [14] characteristic of a
Fermi surface. The herbertsmithite ZnCu3ðOHÞ6Cl2 exhib-
its a sublinear T dependence of the specific heat [15], but
this can be understood from self-energy corrections [9]. In
addition, a Pauli-like susceptibility is inferred at low tem-
peratures once the effect of impurity spins has been fac-
tored out.

On the other hand, this evidence for a spinon surface is
indirect. Spin glass behavior, or a magnon dispersion, !z,
with a power z equal to the dimensionality, can also lead to
a linear T specific heat [4]. Therefore, it would be desirable
to have a more direct test. Now, the existence of a Fermi
surface implies the presence of Friedel oscillations. For a
spin liquid, this would not show up in the charge channel,
but would show up in the spin channel. The challenge is
how to detect this.

As is well known, oscillatory coupling has been seen
between two ferromagnets separated by a paramagnetic
spacer (Fig. 1) [16]. This is a consequence of Kohn anoma-
lies of the Fermi surface which appear in the spin suscep-
tibility [17], but are difficult to observe by neutron
scattering because of their weak intensity. These anomalies
are due to extremal spanning vectors of the Fermi surface.
There are several types: 2kF vectors, umklapp vectors, and
vectors which connect different Fermi surfaces. Large
vectors are difficult to observe in the oscillatory coupling
since their period is comparable to the lattice constant [9]
(and are therefore damped by roughness of the layers), but
small vectors have been prominently observed in transition
metal multilayers [16]. The existence of small vectors
(long period oscillations) is generic, as large Fermi sur-
faces have small umklapp vectors, whereas small Fermi
surfaces have small 2kF vectors. Oscillatory experiments
have the additional advantage of being able to detect
multiple q vectors with different orientations depending
on the growth direction of the layers. These oscillations are
also strongly suppressed by a spin gap [18], as the latter
leads to an exponential decay of the susceptibility with a
distance scale set by the lattice constant [19].
Wewill now apply this idea to spin liquids. We start with

the BEDT salt, originally discovered by Geiser et al. [20].
As discussed by Shimizu et al. [6], this material is com-
posed of dimers that sit on a distorted triangular lattice.
This particular salt, though, has a very small anisotropy of
the hopping integrals of 6%. The resulting Fermi surface is
shown in Fig. 2(a), which was derived from the dispersion
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FIG. 1 (color online). The proposed experiment involves two
ferromagnetic layers (F) with a spin liquid spacer of variable
thickness, z. Depending on the sign of the oscillatory coupling,
the two ferromagnets will be aligned or antialigned.
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�k ¼ 2t0 cosðkbbÞ þ 4t cosðkbb=2Þ cosðkcc=2Þ �� with
t ¼ 54:5 meV, t0 ¼ 57:5 meV, and � ¼ �46:2 meV to
achieve half-filling (b and c are the orthorhombic lattice
constants parallel to the layers). This surface is removed by
a Mott transition [21], but the transition is suppressed by
pressure. We assume that the spinon surface in the Mott
phase is the same as the ‘‘band’’ Fermi surface [22]. We
note that the shortest spanning vector along kc is an um-

klapp vector of length 0:94�=c ¼ 0:22 �A�1, which would
give rise to a real space period of 28.5 Å, comparable to
that seen in multilayers [16]. We should remark that the
real Fermi surface (under pressure) has been seen both by
angle dependent magnetoresistance and Shubnikov–
de Haas oscillations [23].

We can perform the same exercise for the herbert-
smithite [7]. This material has copper atoms on a kagome
lattice, with three copper atoms per unit cell. Assuming a
near-neighbor spinon hopping, ts, one has three bands, the
middle of which is half-filled. Its dispersion is given by
E=ts ¼ 1� X ��, where 4X2 ¼ t212 þ t213 þ t223 þ
3t12t13t23 with t12 ¼ 2 cosðkya=2Þ, t13 ¼ 2 cosðkya=4þffiffiffi
3

p
kxa=4Þ, t23 ¼ 2 cosðkya=4�

ffiffiffi
3

p
kxa=4Þ and a the lattice

constant (each bond has a length a=2). The spinon Fermi
surface, previously derived by Ma and Marston [11], is
shown in Fig. 2(b). It has a short umklapp spanning vector

of 0:50ð2�= ffiffiffi
3

p
aÞ ¼ 0:265 �A�1, giving rise to a period of

23.7 Å, similar to that estimated for the BEDT salt.
One issue with these two materials is that they are two

dimensional. To see an oscillatory period as discussed
above requires that the spanning vector have a component
perpendicular to the multilayer (i.e., along z in Fig. 1). This
would require growing the material with a surface not
perpendicular to the ‘‘(001)’’ direction, which may be a
difficult undertaking. Along with this would be the prob-
able difficulty of growing these materials with controlled
thickness between the two ferromagnets.

We now turn to the hyperkagome case. Na4Ir3O8 has
several advantages. It is cubic, and is also a transition metal
oxide. As such, it should not have some of the growth
difficulties mentioned above. This material has 12 Ir atoms

in the unit cell [8]. Each Ir atom has 4 Ir neighbors, forming
a network of corner sharing triangles. Assuming again
near-neighbor hopping, the resulting 12 bands can easily
be found by numerical diagonalization. The spinon Fermi
surface for this case has been shown by Zhou et al. [12],
and consists of two hole pockets around the R point of the
simple cubic zone, and one electron pocket around the �
point [Fig. 3(a)]. The surfaces are small, and thus the
shortest spanning vectors are of the 2kF variety. To a first
approximation, we find that the surfaces can be approxi-
mated by spheres (the cubic anisotropy is of order 10%).
The kF vector for the electron surface along (100) is
0:31�=a and that of the hole pockets 0:26�=a. As there
are two hole pockets, their contribution will dominate over
the electron pocket in the oscillatory coupling. With a of
8.985 Å, this results in a predicted oscillatory period of
34.5 Å.
We can make a quantitative estimate of the oscillatory

coupling following the literature in the GMR (giant mag-
netoresistance) field [17]. We assume that the coupling of
the spins in the ferromagnet to those in the spin liquid can
be described by an effective contact interaction A�ðr�
riÞs � Si where s is the spin vector of the spin liquid at
position r and Si the spin vector of the ferromagnet at
position ri. Values for A can be estimated by calculating
the transmission properties of the barrier between the
ferromagnet and spacer layers, although these calculations
are quite involved [18,24]. This effective contact interac-
tion then leads to a coupling between a site in the first
ferromagnet layer to one in the second

Jij ¼ � A2

16�3V

Z
d3q�ðqÞeiq�ðrj�riÞ; (1)

where V is the unit cell volume of the spin liquid, and �ðqÞ
the static susceptibility of the spin liquid in units of 2�2

B

per unit cell. The interlayer coupling per unit area is then
obtained by summing over the lattice sites in the second
ferromagnetic layer,

Ii ¼ d

V
S2
X
j

Jij; (2)
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FIG. 3 (color online). (a) Spinon Fermi surface for Na4Ir3O8

(a ¼ 8:985 �A). Spanning vectors are indicated by arrows.
(b) Calculated oscillatory response from Eq. (12).
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FIG. 2 (color online). Spinon Fermi surface for
(a) �� ðBEDT� TTFÞ2Cu2ðCNÞ3 (b ¼ 8:59 �A, c ¼ 13:40 �A)
and (b) ZnCu3ðOHÞ6Cl2 (a ¼ 6:84 �A). Spanning vectors are
indicated by arrows.
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where d is the layer spacing of the spin liquid. Substituting
for Jij, we have

IðzÞ ¼ � A2S2d

16�3V2

Z
dqze

iqzz
Z

d2qk�ðqk; qzÞ
X
rk

eiqk�rk

(3)

with z oriented as in Fig. 1 and the sum is over r vectors in
the second ferromagnetic layer. By Bloch’s theorem, the
sum reduces qk to zero, and we obtain

IðzÞ ¼ �A2S2d2

4�V3

Z
dqze

iqzz�ð0; 0; qzÞ: (4)

To proceed further, we have to specify �. As in the spin-
liquid literature [9], we will assume that � is given by the
bare polarization bubble times the Gutzwiller projection
factor gJ ¼ 4 [25]. This then yields

IðzÞ ¼ �A2S2gJg
2s2d2

32�4V2

�
Z

d3k
Z

dqze
iqzz

fð�kÞ � fð�kþqÞ
�kþq � �k

(5)

where q � ð0; 0; qzÞ, f is the Fermi-Dirac function, �k the
spinon dispersion, and g the effective g factor of the spin
liquid (S is the magnitude of the spin vector of the ferro-
magnet, and s the magnitude of the spin vector of the spin
liquid). Note that there is an implicit double sum over band
indices.

The integrals over kz and qz can be converted to integrals
over �k and �kþq, and the remaining integral over kk will
be dominated by extremal q vectors connecting the spinon
Fermi surface(s). The variation of the extremal q vector is
given by an expansion of the spinon dispersion about kF
[26]

�k ¼ vzðkz � kFÞ þ 1
2ðk2xDxx þ k2yDyy þ 2kxkyDxyÞ; (6)

where vz is the Fermi velocity along z and D is the inverse
mass tensor. In our cubic case, Dxx ¼ Dyy. Setting �k to

zero and solving, we find

kz ¼ kF � 1

2vz

ððk2x þ k2yÞDxx þ 2kxkyDxyÞ: (7)

This is easily diagonalized by rotating 45� in kx, ky space

kz ¼ kF � 1

2vz

ðk21D1 þ k22D2Þ; (8)

where D1;2 ¼ Dxx �Dxy.

Because of the multiple Fermi surfaces in Fig. 3(a), both
intraband and interband terms are present. The latter will
be particularly relevant for the susceptibility in the pres-
ence of spin-orbit coupling (known to be significant in the
case ofNa4Ir3O8 [27]). For the intraband terms, q is simply
twice kz. Collecting these terms, we arrive at the T ¼ 0
expression [17]

IðzÞ ¼ �I0
d2

z2

X
n

m�
n

m
sinð2kFnzþ�nÞ; (9)

where m�
n is the effective mass,

m�
n ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jD2

xx �D2
xyj

q
; (10)

m the bare mass, and n the band index. Restoring @, I0 is
equal to mgJðASgs=ð4�@VÞÞ2 [28]. �n is a phase angle,
equal to zero if q is a maximum, �=2 if a saddlepoint, and
� if a minimum. For the interband terms, we must replace
D1 and D2 by their averages over the two bands. For the
hyperkagome case, it turns out that D1 and D2 are inter-
changed between the two hole bands. As a consequence,
the interband contributions in this case reduce to the same
expression as in Eq. (9), but with

m�
n ¼ 1=jDxxj: (11)

The various parameters are listed in Table I.
Note that the value of m�

n for the interband term from
Table I is 0.239. Summing over the two intraband and two
interband terms, we find the total hole contribution to be
twice 0:296þ 0:239 or 1.07. The ratio of this to the elec-
tron value of 0.382 is 2.8. Noting that in the present case,
for all contributions, q is a maximum [29], we then find

IðzÞ ¼ �I0
d2

z2
ð2:8 sinð0:182zÞ þ sinð0:218zÞÞ; (12)

where we have absorbed the proportionality constant for
the mass (which involves the spinon hopping integral ts)
into I0, with z (the separation of the two ferromagnets) in
units of Å. This function is plotted in Fig. 3(b), where we
find a periodicity consistent with the hole period of 34.5 Å
mentioned above, but with beating clearly present due to
the electron period. This shows the power of this technique
to resolve complex Fermi surface topologies.
We note that although at very low temperatures,

Na4Ir3O8 exhibits a superlinear specific heat, indicating
that the spinon surface might develop nodes [12], over
most of the temperature range, it is consistent with an
ungapped surface [13]. Therefore, we regard this cubic
material as a promising one to consider in the context of
our proposed experiment, though we encourage that all
candidate spin liquids be looked at.

TABLE I. Properties of the hole and electron surfaces of
Na4Ir3O8 used in calculating the oscillatory coupling. k is in
units of �=a, m� in units of m, and � in units of ts.

Band kF vz Dxx Dxy m�
n

5 (1,1,1.260) �0:971 �4:182 �2:465 0.296

6 (1,1,1.260) �0:971 �4:182 2.465 0.296

7 (0,0,0.312) 1.522 2.618 �0:001 0.382
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In conclusion, we have proposed an experiment based on
oscillatory coupling between two ferromagnets with a spin
liquid spacer for possible detection of a spinon Fermi
surface. This, and other Friedel-like experiments, will
hopefully be pursued in the future to see whether this novel
spin liquid state exists.
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