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A theory of the fluctuation-induced Nernst effect is developed for a two-dimensional superconductor in

a perpendicular magnetic field. First, we derive a simple phenomenological formula for the Nernst

coefficient, which naturally explains the giant Nernst signal due to fluctuating Cooper pairs. The latter

signal is shown to be large even far from the transition and may exceed by orders of magnitude the Fermi

liquid terms. We also present a complete microscopic calculation of the Nernst coefficient for arbitrary

magnetic fields and temperatures, which is based on the Matsubara-Kubo formalism. It is shown that the

magnitude and the behavior of the Nernst signal observed experimentally in disordered superconducting

films can be well understood on the basis of superconducting fluctuation theory.
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A series of recent experimental studies have revealed
anomalously strong thermomagnetic signal in the normal
state of the high-temperature superconductors [1–8] and
disordered superconducting (SC) films [9,10]. In the pio-
neering experiment [1], Xu et al. observed a sizeable
Nernst effect in the La2�xSrxCuO4 compounds up to
130 K, well above the transition temperature, Tc. This
and further similar experiments on the cuprates have
sparked theoretical interest in the thermomagnetic phe-
nomena. Theoretical approaches to the anomalously large
Nernst-Ettingshausen effect currently include models
based on the proximity to a quantum critical point [11],
vortex motion in the pseudogap phase [2,12,13], as well as
a SC fluctuation scenario [14–16]. While the two former
theories are specific to the cuprate superconductors, the lat-
ter scenario should apply to other more conventional SC
systems as well. Very recently, a large Nernst coefficient
was observed in the normal state of disordered supercon-
ducting films [9,10]. These films are likely to be well-
described by the usual BCS model and, hence, the new
experimental measurements provide an indication that the
SC fluctuations are likely to be the key to understanding
the underlying physics of the giant thermomagnetic
response.

Various groups have previously calculated the
fluctuation-induced Nernst coefficient in the vicinity of
the classical transition [14–18]. However, these analyses
were limited to the case of very weak magnetic fields and
temperatures close to Tc. In experiment, however, other
parts of the phase diagram (in particular strong fields) are
obviously important and how the quantized motion of
fluctuating Cooper pairs would figure into the thermomag-
netic response has remained unclear. In this Letter we
clarify this physics, explaining the origin of the giant
fluctuation Nernst-Ettingshausen effect, and develop a
complete microscopic theory of Gaussian SC fluctuations
at arbitrary magnetic fields and temperatures.

We start with a qualitative discussion of the Nernst-
Ettingshausen effect. Consider a conductor in the presence
of a magnetic field, Hz, and electric field, Ey, directed

along the z and y axes, respectively. The charged carriers
subject to these crossed fields acquire a drift velocity �vx ¼
cEy=Hz in the x direction. That would result in the appear-

ance of a transverse current jx ¼ ne �vx. When the circuit is
broken, no current flows, and the drift of carriers is pre-
vented by the spacial variation of the electric potential:
rx’ ¼ �Ex ¼ ðnec=�ÞðEy=HzÞ, where � is the conduc-

tivity. Because of electroneutrality, this generates the gra-
dient of the chemical potential: rx�ðn; TÞ þ erx’ ¼ 0,
which corresponds to the appearance of the temperature
gradient rxT ¼ ðd�=dTÞ�1rx� along the x direction.
Hence, the Nernst coefficient can be expressed in terms
of the full temperature derivative of the chemical potential:

�N � Ey

ð�rxTÞHz

¼ �

ne2c

d�

dT
: (1)

E.g., in a degenerate electron gas, the chemical potential
�ðTÞ ¼ �0 � ð�2T2=6Þðd ln�=d�Þ, where �ð�Þ is the
density of states, and one easily reproduces the value of
the Nernst coefficient in a normal metal [19,20]: �N ¼
ð�2T=3mcÞðd�=d�Þ, where � is the elastic scattering time
(here and below @ ¼ kB ¼ 1). Thus the Nernst effect in
metals is small due to the large value of the Fermi energy.
The simple form of Eq. (1) suggests that in order to get a

large Nernst signal, a strong temperature dependence of the
chemical potential of carriers is required. That can be
achieved in the vicinity of the SC transition where fluctu-
ating Cooper pairs appear besides normal electrons. In two
dimensions (2D), the concentration of these excitations is

nð2Þc:p:ðTÞ ¼ ðmTc=�Þ ln½Tc=ðT � TcÞ� [21], which corre-
sponds to the chemical potential �c:p:ðTÞ ¼ Tc � T.

Since d�c:p:=dT ¼ �1, the fluctuation contribution to the

Nernst signal exceeds parametrically the Fermi liquid
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term. In this sense it is similar to the fluctuation diamag-
netism (which also exceeds the Landau/Pauli terms and is
effectively a correction to the perfect diamagnetism of a
superconductor). Substituting the known expression for

paraconductivity in a magnetic field, �fl ¼
ðe2=2�ÞFð�=2~hÞ [21], into Eq. (1), one finds the value of
the Nernst coefficient in the Ginzburg-Landau (GL) region:

�ðGLÞ
N � 1

mc

FðxÞ
T � Tc

�
� ½mcðT � TcÞ��1; x � 1;
ðmeDHÞ�1; x � 1;

(2)

FðxÞ ¼ x2½c ð1=2þ xÞ � c ðxÞ � 1=ð2xÞ�; (3)

where x ¼ �=2~h, � ¼ lnðT=TcÞ and ~h ¼ H= ~Hc2ð0Þ are the
reduced temperature and magnetic field, ~Hc2ð0Þ ¼
4cTc=�eD is the linearly extrapolated value of the upper
critical field, and D is the diffusion coefficient. The esti-
mate (2) corresponds to the results [14,17].

We now proceed with the microscopic calculation of the
Nernst coefficient, �NðT;HÞ ¼ Rh�

xy=H, and first recall a
deep relation between the fluctuation Nernst effect and
magnetization as emphasized in Refs. [14,22,23]: In the
presence of a magnetic field, the measurable transport heat

current jQtr differs from the microscopic heat current jQ by

the circular magnetization current jQM ¼ cM�E, where
M is the induced magnetization. As a result, the thermo-

electric tensor ��� relating jQ�
tr ¼ T���E� with the ap-

plied electric field E can be found as a sum of the kinetic,
~���, and thermodynamic, ���

M , contributions:

��� ¼ ~��� þ ���
M ; ���

M ¼ ���	cM	=T: (4)

The term ~��� can be expressed via the Matsubara corre-
lator of the electric and heat currents, Q��ð!�Þ ¼
hje�ð�!�ÞjQ�ð!�Þi, by analytic continuation to real fre-

quencies: ~��� ¼ T�1lim!!0ImQ��ð�i!þ 0Þ=!, while

the term ���
M accounts for the magnetization heat current

jQM. The fluctuation magnetization, MðT;HÞ, has been
calculated previously in the GL region [21,24,25] and at
low temperatures [26].

Our goal now is to evaluate the linear response operator
Qxyð!�Þ. We perform calculations in the Landau basis,
which guarantees that gauge invariance is preserved and
allows us to access the high-field regime [26]. The fluc-
tuation part of the correlator Qxyð!�Þ is generally repre-
sented by ten diagrams [21,26]. However, in the case of the
Nernst effect, the Maki-Thompson contribution can be
shown to be exactly zero and some of the DOS diagrams

turn out to be less singular: The graphs containing three
Cooperons (see Fig. 1) are dominant. The positive
Aslamazov-Larkin (AL) term dominates in the classical
GL region and competes with the negative density-of-
states (DOS) contribution everywhere else. These AL and
DOS contributions, and the fluctuation magnetization are
given by

Qxy
ALð!�Þ ¼ �4�HT

X
�k

X
n;m

q̂xmnB
ðeÞ
nmLnð�kÞ

� q̂ynmB
ðQÞ
nmLmð�kþ�Þ; (5)

2Qxy
DOSð!�Þ ¼ 4�HT

X
�k

X
n;m

q̂xmn�
ðe;QÞ
nm q̂ynmLnð�kÞ; (6)

Mz ¼ � @

@H
�HT

X
�k

X
n

lnL�1
n ð�kÞ: (7)

Here Lnð�kÞ ¼ ���1½lnðT=TcÞ þ c nðj�kjÞ � c ð1=2Þ��1

is the fluctuation propagator, c nð�Þ is a shorthand nota-
tion for c ½1=2þð�þ�nÞ=4�T�, with �n¼ð4eDH=cÞ�
ðnþ1=2Þ being the Landau spectrum, �H ¼ eH=�c, and
the matrix elements of the momentum operator in the

Landau basis are given by q̂�mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
eH=c

p ðu�
ffiffiffiffi
m

p

m;nþ1 þ

u��
ffiffiffi
n

p

n;mþ1Þ, where ux ¼ i; uy ¼ 1.

The blocksB and� entering Eqs. (5) and (6) are made of
Green functions, Cooperons, and electric and heat vertices.
We note here that there exists a long-standing controversy
of the proper definition of the heat current and, more
generally, the applicability of Kubo-type linear response
theory for thermal transport. In our microscopic calcula-
tions, we do assume that the latter holds and use the
standard definition of the heat current [21], with the heat
vertex ið"e þ "eþ�Þv=2. Then we find (!� 	 0):

BðeÞ
nmð�k; !�Þ ¼ e�D

�
c mð!� þ j�kjÞ � c nðj�kjÞ

!� þ �m � �n

þ c nð!� þ j�kþ�jÞ � c mðj�kþ�jÞ
!� � �m þ �n

�
; (8)

BðQÞ
nm ð�k; !�Þ ¼ � i�D

2

�ð�k � �mÞc mðj�kj þ!�Þ � ð�kþ� � �nÞc nðj�kjÞ
!� þ �m � �n

þ ð�kþ� þ �nÞc nðj�kþ�j þ!�Þ � ð�k þ �mÞc mðj�kþ�jÞ
!� þ �n � �m

�
; (9)

FIG. 1. The Aslamazov-Larkin (AL) and density-of-states
(DOS) diagrams for the thermoelectric response ~�xy. The DOS
diagram has a symmetric counterpart. The white and black
circles correspond to the different heat and electric vertices,
the shadowed blocks represent Cooperons, and the wavy lines
denote the fluctuation propagator (see text). All objects on these
graphs are generally matrices in the Landau basis.
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�ðe;QÞ
nm ð�k; !�Þ ¼ �ie�D2

�
�kþ� � �n

!� þ �m � �n

c 0
nðj�kjÞ � �kþ� þ �n

!� � �m þ �n

c 0
nðj�kþ�j þ!�Þ � �k � �m

ð!� þ �m � �nÞ2

� ðc mðj�kj þ!�Þ � c nðj�kjÞÞþ �k þ �m

ð!� � �m þ �nÞ2
ðc nðj�kþ�j þ!�Þ � c mðj�kþ�jÞÞ

�
: (10)

The general calculation of Eqs. (5)–(7) and their analytic
continuation to real frequencies is straightforward but
cumbersome. However, one can identify nine qualitatively
different regions of the phase diagram (Fig. 2), where the
asymptotic behavior has a simple analytical form. Before
proceeding to the corresponding details, we emphasize that
the result for the Nernst coefficient is universal in the sense
that the function �xyðT;HÞ depends only on T=Tc and
H=Hc2ð0Þ, but not the elastic scattering time � (unlike
conductivity). This universality is due to the magnetization
contribution, �xy

M , which regularizes the otherwise diver-

gent (and thus �-dependent) terms in ~�xy. These remark-
able cancellations between the two physically distinct
terms taking place in a wide parameter range provide a
strong evidence that the standard definition of the heat
vertices is indeed appropriate to describe the effect.

We start by discussing the classical regime close to the
critical temperature Tc: The regions I, II, III in Fig. 2 are

characterized by � ¼ lnðT=TcÞ � 1 and ~h ¼ H= ~Hc2ð0Þ �
1. In these domains, only the classical AL contribution is

important and is given by [cf. Eq. (2)]: ~�xy ¼ 2�0FðxÞ=x,
where x ¼ �=2~h,�0 ¼ kBe=�@ ¼ 6:68 nA=K is the quan-
tum of thermoelectric conductance, and the function FðxÞ
is given by Eq. (3). The magnetization contribution is

�xy
M ¼ �0

�
ln
�ð1=2þ xÞffiffiffiffiffiffiffi

2�
p � xc ð1=2þ xÞ þ x

�
: (11)

In the limit of vanishingly small magnetic fields ~h � �

(region I), we find ~�xy ¼ �0ð~h=2�Þ, which is 2 times larger
than the result of Refs. [14,15,21]. The additional factor is
due to the complicated analytic structure of the heat-
current block (9) overlooked in the previous diagrammatic
calculations of Refs. [14,15,21], but properly accounted for

in Ref. [18]. Note that our result for ~�xy also differs by a
factor of 2 from the prediction of the phenomenological
time-dependent GL approach [21]. This difference may be
related to a more fundamental issue (as compared to a
calculational mistake) and may signal, e.g., a problem
with the definition of the heat currents within time-
dependent GL theory or/and diagrammatics. The exact
origin of the factor-of-two remains unclear at this stage.
In the region I we obtain

�xy
I ¼ �0

~h

3�
¼ �0

�eDH

12cðT � TcÞ ;
~h � � � 1; (12)

which is 4 times larger than the result of Refs. [14,15,21].

In the limit � � ~h (region II), and close to the transition

line, at ~hþ � � ~h (region III), we find

�xy
II ¼ �0½1� ðln2Þ=2�; � � ~h � 1; (13)

�xy
III¼�0

~h

�þ ~h
¼�0

Hc2ðTÞ
H�Hc2ðTÞ ; �þ ~h� ~h�1: (14)

Now we turn to the low-temperature regime close to the
upper critical field Hc2ð0Þ ¼ �cTc=2	eD (regions IV, V,
VI in Fig. 2), where 	 ¼ 1:78 . . . Here the role of the
magnetization term becomes crucial: The cancellation of

the 1=T divergence of ~�xy by �xy
M ¼ cMz=T ensures that

the third law of thermodynamics holds, making �xy finite
as T ! 0. In the purely quantum limit of vanishing tem-
perature (t � �, region IV), �xy is negative:

�xy
IV¼�2�0	t

9�
¼��0�cT=9eD

H�Hc2ð0Þ ; t���1: (15)

This change of sign is due to the DOS contribution being
numerically larger than the positive AL term [26]. In the
quantum-to-classical crossover region, where H tends to
Hc2ðtÞ but remains limited as t2= lnð1=tÞ � � � t (region
V), the coefficient �xy is positive:

�xy
V ¼ �0 lnðt=�Þ; t2= lnð1=tÞ � � � t � 1: (16)

Near Hc2ðtÞ (� � t2= lnð1=tÞ, region VI), we find:

�xy
VI ¼ 8�0	

2t2=3�; � � t2= lnð1=tÞ � 1: (17)

We also address the full classical region just above the
transition line, which covers a wide range of temperatures
and magnetic fields (� � 1, region VII). Here

�xy
VII¼

�0

�

�
1þ h

4	t

c 00ð1=2þh=4	tÞ
c 0ð1=2þh=4	tÞ

�
; �!0; (18)

with h ¼ H=Hc2ð0Þ. Close to Tc, Eq. (18) matches
Eq. (14), while in the limit T ! 0 it matches Eq. (17)
provided that � � t2= lnð1=tÞ.

FIG. 2 (color online). Different asymptotic regions for the
fluctuation Nernst effect on the H-T phase diagram.

PRL 102, 067001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 FEBRUARY 2009

067001-3



Finally, we address the regions VIII and IX far from the

transition line. In this limit, the Kubo contribution ~�xy di-
verges as ½ln lnð1=Tc�Þ � ln ln maxðh; tÞ�, with 1=� play-
ing the role of the ultraviolet cutoff of the Cooperon
modes. Remarkably, the same divergence of the opposite
sign occurs in the magnetization contribution �xy

M . Hence,
�xy remains � independent:

�xy
VIII ¼ �0

eDH

6�cT lnðT=TcÞ ; ð1; hÞ � t; (19)

�xy
IX ¼ �0

�cT

12eDH ln½H=Hc2ð0Þ� ; ð1; tÞ � h: (20)

We see that even far from the transition the fluctuation
Nernst signal can be comparable or parametrically larger
than the Fermi liquid terms. In fact, it is conceivable that in
some materials the Cooper channel contribution to thermal
transport dominates even in the absence of any supercon-
ducting transition (e.g., if it is ‘‘hidden’’ by another order).

Plotted in Fig. 3 is a comparison between our theory and
the experimentally measured Nernst coefficient [9] for a
Nb0:15Si0:85 film of thickness d ¼ 12:5 nm. The dashed
line corresponds to the coefficient limH!0�

xy=H in a
wide range of temperatures up to 30Tc. We used the
diffusion coefficient D ¼ 0:087 cm2=s which is 60% of
that reported in Ref. [9] (with kFl� 1, the precise deter-
mination of D is questionable). Note that far from the
transition point (� > 2), the SC coherence length �ðTÞ
becomes shorter than d and 3D nature of diffusion mani-
fests itself. It can be described by substituting �n ! �n þ
Dð�p=dÞ2 and performing an additional summation over
p ¼ 0; 1; . . . in Eqs. (5)–(7). The resulting curve is shown
in Fig. 3 by the solid line.

In summary, we have developed a complete microscopic
theory of the fluctuation Nernst effect in a 2D supercon-
ductor. Our results provide a natural explanation for a large

Nernst signal observed in SC films [9,10] and probably
should be relevant to the cuprates. Another interesting
theoretical predictions is a slow decay of the transverse
thermoelectric response away from the transition line,
which is expected to persist well into the metallic phase.
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Note added in proof.—In a very recent preprint [27], the

fluctuation Nernst effect has been analyzed within the
Keldysh formalism. Results of Ref. [27] qualitatively co-
incide with our results, differing in some numerical factors
of order 1 in several asymptotic regions.
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FIG. 3 (color online). Comparison with experiment. Circles:
experimental data for limH!0�

xy=H vs � ¼ lnT=Tc obtained for
the 12.5-nm-thick Nb0:15Si0:85 film [9]. Dashed line: theoretical
prediction for the strictly 2D geometry. Solid line: theoretical
prediction for the real sample [9].
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