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Electron quasiparticles are progressively weakened by correlations upon approaching a continuos Mott

metal-insulator transition in a bulk solid. We show that corresponding to the bulk weakening, a dead layer

forms below the surface of the solid, where quasiparticles are exponentially suppressed. The surface dead

layer depth is a bulk property and diverges when the Mott transition is approached. We describe this

phenomenon in a Hubbard model within a self-consistent Gutzwiller approximation. The photoemission

data of Rodolakis et al. [Phys. Rev. Lett. 102, 066805 (2009)] in V2O3 appear to be in accord with this

physical picture.
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The Mott transition [1] where a lattice of atoms or
molecules abandons the metallic state and turns insulating
due to electron-electron repulsion has a very intuitive
physical explanation. Electron motion in the lattice is
caused by kinetic energy and is favored by electron-ion
energy because the same electron can feel in this way the
attraction of more than one nucleus. It is opposed by
Coulomb repulsion, higher for itinerant electrons due to
the higher chance of collision during motion. When the
first two terms (which form the band energy) prevail, the
system is a band metal; otherwise the electrons localize,
and we have an insulator. Despite the conceptual simplic-
ity, the properties of Mott insulators and especially of the
strongly correlated metallic state close to a Mott transition
remain quite difficult to capture both theoretically and
experimentally. Theoretically, the reason is that the Mott
transition is a collective phenomenon, which escapes
single-particle or mean field theories such as Hartree-
Fock or density-functional theory–local-density approxi-
mations. Experimentally, complications such as magne-
tism, lattice distortions, etc., often conspire to mask the
nature of metal-insulator transitions.

Fresh progress on this problem has come in the past two
decades with dynamical mean field theory (DMFT) [2],
which in the standard Hubbard model showed that, as the
electron-electron repulsion parameter U increases, the ini-
tial band metal evolves first to a strongly correlated metal
well before the Mott transition. In the strongly correlated
metal the electron spectral function undergoes a profound
change exhibiting well formed, localized Mott-Hubbard
bands coexisting with delocalized, propagating quasipar-
ticles—the latter narrowly centered in energy near the
Fermi level. Only successively do the quasiparticles dis-
appear as the Mott transition takes place when U is in-
creased to reach U ¼ Uc. This intriguing prediction—
simultaneous metallic and insulating features, though on
well separated energy scales—has stimulated a consider-

able experimental effort to reveal coexisting quasiparticles
and Mott-Hubbard bands in strongly correlated metals [3–
12]. A large amount of work has been done on V2O3, the
prototype compound where a Mott transition was first
discovered [13] and studied theoretically [14,15]. At the
metal-insulator transition of ðV1�xCrxÞ2O3, early photo-
emission experiments [16–19] failed to reveal the sharp
quasiparticle peak predicted by DMFT. The electronic
spectrum was simply dominated by the lower Mott-
Hubbard band with barely a hint of metallic weight at the
Fermi energy. A similar puzzle was actually reported much
earlier in f-electron materials [20], and soon ascribed to
large surface effects in the presence of strong correlations
[21], the same conclusion reached by more recent photo-
emission experiments [3,4,6,7,11,12,22]. In V2O3, using
higher kinetic energy photoelectrons, whose escape depth
is larger, a prominent quasiparticle peak coexisting with
incoherent Mott-Hubbard bands was eventually observed
[5,10,23]. Quasiparticle suppression in surface-sensitive
probes was attributed [23] to surface-modified Hamilton-
ian parameters, the reduced atomic coordination pushing
the surface closer to the Mott transition than the underlying
bulk. Larger electronic correlations at the surface have
been discussed by several authors through ad hoc formu-
lations of DMFT [24–26]. There is general agreement on
intrinsically different quasiparticle properties near a sur-
face, even if all Hamiltonian parameters were to remain
identically the same up to the outermost atomic layer [24].
This conclusion, although not unexpected, raises a more

fundamental question. A metal does not possess any in-
trinsic length scale at long distances other than the Fermi
wavelength. Thus an imperfection like a surface can only
induce at large depth a power-law decaying disturbance
such as that associated with Friedel’s oscillations. Since
one does not expect Luttinger’s theorem to break down,
even in a strongly correlated metal these oscillations
should be controlled by the same Fermi wavelength as in
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the absence of interaction, irrespective of the proximity of
the Mott transition. However, a strongly correlated metal
does possess an intrinsic energy scale, the parametric
distance of the Hamiltonian from the Mott transition,
where that distance could be associated with a length scale.
The surface as a perturbation should alter the quasiparticle
properties within a depth corresponding to that length, a
bulk property increasing near the Mott transition, unlike
the Fermi wavelength that remains constant. In this respect,
it is not a priori clear whether the recovery of bulk quasi-
particles’ spectral properties with increasing depth should
be strictly power law, compatible with the common view of
a metal as an inherently critical state of matter, or whether
it should be exponential, as one would expect by regarding
the Mott transition as any other critical phenomena where
power laws emerge only at criticality. We find here in the
simple half-filled Hubbard model that the quasiparticle
spectral weight below the surface is actually recovered
exponentially inside the bulk with a length scale that
depends only on the bulk properties and diverges approach-
ing the continuous Mott transition.

To address the generic surface features of a strongly
correlated metal, we study the simplest Hamiltonian ex-
hibiting a Mott transition, namely, the Hubbard model at
half filling:

H ¼ �t
X

hRR0i�
cyR�cR0� þ H:c:þX

R

URnR"nR#; (1)

where hRR0i are nearest neighbor sites, cyR� creates an

electron at site R with spin �, and nR� ¼ cyR�cR�.
Conventionally, the Mott transition of the half-filled
Hubbard model is studied restricting to the paramagnetic
sector of the Hilbert space [2,14,15] so as to avoid spurious
effects due to magnetism. We assume a cubic lattice of
spacing a with periodic boundary conditions in x and y
directions and open boundary conditions in the z direction,
in anN-layer slab geometry with two surfaces at z ¼ 0 and
z ¼ Na. The Hubbard electron-electron interaction pa-
rameterUR isU everywhere except at the top surface layer
(z ¼ 0), where it takes a generally higher valueUs > U. In
this way we can compare effects at the ideal lower surface
(z ¼ Na), whereUNa ¼ U, with the more correlated upper
surface (z ¼ 0). DMFT [2] offers an ideal tool to attack this
model in the paramagnetic sector, assuming a local self-
energy that depends on the layer index z [24–26]. However,
a full DMFT calculation of this sort is numerically feasible
only for a small number of layers, e.g., N ¼ 20 as in
Ref. [27], making the critical regime near the Mott tran-
sition hard to access. As a useful approximate alternative,
one can resort to the so-called linearized DMFT [24,28] to
treat moderately larger sizes. We decided to adopt a differ-
ent method altogether, the Gutzwiller variational approxi-
mation [29]. Despite its limitations (static mean field
character, inability to describe the insulating phase), it is
known to provide a good description of quasiparticle prop-

erties close to the Mott transition [2] with very little size
limitations and great simplicity and flexibility (it may treat
intersite interactions, any kind of lattice, etc.). We study (1)
by means of a Gutzwiller-type variational wave function

j�i ¼ Y
R

PRj�0i; (2)

where j�0i is a paramagnetic Slater determinant. The
operator PR has the general expression

P R ¼ X2
n¼0

�nðzÞjn;Rihn;Rj; (3)

where jn;Rihn;Rj is the projector at siteR ¼ ðx; y; zÞ onto
configurations with n electrons, and �nðzÞ are layer-
dependent variational parameters. We calculate average
values on j�i using the so-called Gutzwiller approxima-
tion [30,31] (for details see, e.g., Ref. [29], whose notations
we use hereafter), and require that

h�0jP 2
Rj�0i¼1; h�0jP 2

RnR�j�0i¼ h�0jnR�j�0i:
(4)

Because of particle-hole symmetry, h�0jnR�j�0i ¼ 1=2,
from which it follows that Eq. (4) is satisfied if �2ðzÞ ¼
�0ðzÞ, �1ðzÞ2 ¼ 2� �0ðzÞ2. The average value of (1) is
then [29,32]

E ¼ h�jHj�i
h�j�i

¼ X
R

UR

4
�0ðzÞ2 � t

X
hRR0i�

RðzÞRðz0Þh�0jcyR�cR0 (5)

where RðzÞ ¼ �0ðRÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� �0ðRÞ2p

plays the role of a wave
function renormalization factor. Its square is the actual
quasiparticle weight, ZðzÞ ¼ R2ðzÞ, since Fermi liquid the-

ory renormalizes cyR� to RðzÞcyR� [note also that the

Hubbard bands, carrying the remaining weight (1�
ZðzÞ), do not appear explicitly]. One can invert this equa-
tion to express �0ðzÞ as a function of RðzÞ, which become
the actual variational parameters together with the Slater
determinant j�0i. In order to minimize E in Eq. (5) we
assume that the Slater determinant j�0i is built with
single-particle wave functions that, because of the slab

geometry, have the general expression ��kk ðRÞ ¼ffiffiffiffiffiffiffiffiffi
1=A

p
eikk�R��kk ðzÞ, where A is the number of sites per

layer and kk the momentum in the x-y plane. The sta-

tionary value of E with respect to variation of ��kk ðzÞ and
RðzÞ corresponds to the coupled equations

���kk ðzÞ ¼ RðzÞ2�kk��kk ðzÞ � tRðzÞ
� X

p¼�
Rðzþ paÞ��kk ðzþ paÞ; (6)
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RðzÞ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RðzÞ2p
UðzÞA

Xoccupied

�kk

�
�2RðzÞ�kk��kk ðzÞ2

þ t��kk ðzÞ
X
p¼�

Rðzþ paÞ��kk ðzþ paÞ
�
; (7)

where �kk ¼ �2tðcoskxaþ coskyaÞ and the sum in Eq. (7)

runs over all pairs of ð�;kkÞ that are occupied in the Slater

determinant j�0i. The first equation has the form of a
Schrödinger equation that the single-particle wave func-
tions ��kk ðzÞ must satisfy, depending parametrically on

RðzÞ. The second equation has been intentionally cast in
the form of a map Rjþ1ðzÞ ¼ F½RjðzÞ; Rjðzþ aÞ; Rjðz�
aÞ� whose fixed point we have verified to coincide with the
actual solution of (7) in the parameter region of interest.
Equations (6) and (7) can be solved iteratively as follows.
First solve the Schrödinger equation at fixed RjðzÞ, next
find the new Rjþ1ðzÞ using the old RjðzÞ and the newly

determined wave functions ��kk ðzÞ. With the new Rjþ1ðzÞ,
repeat the above steps and iterate until convergence.
Because of the large number of variational parameters,
this iterative scheme is much more efficient than—while
fully equivalent to—a direct minimization of E, Eq. (5).

In Fig. 1 we plot ZðzÞ ¼ R2ðzÞ, experimentally the total
spectral weight carried by quasiparticles, calculated as a
function of z (in units of the lattice spacing a) for Us ¼
20t, for two different bulk values 15t and 15:98t of U
below the critical Mott-transition value Uc ¼ 16t.

Coming from the bulk, the quasiparticle weight ZðzÞ de-
creases monotonically on approaching both surfaces,
where it attains much smaller values than in bulk. As
expected, the more correlated surface has a smaller quasi-
particle weight, Zð0Þ< ZðNÞ. Note, however, that so long
as the slab interior (the ‘‘bulk’’) remains metallic, the
surface quasiparticle weight never vanishes no matter
how large Us [24]. Mathematically, this follows from Eq.
(7), which is not satisfied by choosing Rð0Þ ¼ 0 while
Rðz > 0Þ � 0. Physically, some metallic character can al-
ways tunnel from the interior to the surface, so long as the
bulk is metallic. The quasiparticle weight approaches the
surface with upward curvature when U is closest to Uc,
upper panel in Fig. 1, whereas the behavior is linear well
below Uc, as found earlier within linearized DMFT [24].
We note that an upward curvature is in better accord with
photoemission spectra of Rodolakis et al. on V2O3 [33].
The curvature becomes more manifest if the number of
surface layers where Us > U is increased, as shown in
Fig. 2. Next, we analyze the dependence of RðzÞ at large
distance 1 � z � N=2 below the surface. As Fig. 3
shows, we find no trace of a power law, and R is best fit

by an exponential RðzÞ ¼ Rbulk þ ðRsurf � RbulkÞe�z=�,
where Rbulk is the bulk value (a function of U only) and
Rsurf < Rbulk. Rsurf now depends on both U and on Us, and
vanishes only when Rbulk does at U >Uc. A detailed study
by varying U and Us shows that the surface ‘‘dead layer’’
thickness � depends only on bulk properties and diverges
at the Mott transition as � / ðUc �UÞ��. Numerically we
find � ¼ 0:53� 0:3 ’ 0:5, a typical mean field exponent
[27]. The same conclusion can actually be drawn by ana-
lyzing Eqs. (6) and (7) deep inside the bulk. We note that
the precise behavior at the outermost surface layers would
in a real system depend on details, such as lack of electron-
hole symmetry and/or surface dipoles, not included in our
model. However, we believe that the exponential behavior
and its divergence at a continuousMott transition should be
generic and universal, and thus independent of these and
other details. In conclusion, we have shown in a simple
approximation the existence in the Hubbard model of
strongly correlated metals of a ‘‘dead layer’’ below the

FIG. 1 (color online). The quasiparticle weight ZðzÞ ¼ R2ðzÞ
as a function of the coordinate z perpendicular to the surface (in
units of the lattice spacing) for a 100-layer slab. The interaction
parameter at z ¼ 0 is Us ¼ 20t, while the bulk U is 15:98t in the
upper panel and 15t in the lower one (whileUc ¼ 16). The insets
show the behavior of Z close to the two surfaces, the highest
curve corresponding to the bulklike surface, the other to Us ¼
20t.

FIG. 2 (color online). Quasiparticle weight dependence on the
distance z from the surface for two different bulk U values and
for two cases: one where only the first layer has Us ¼ 20t > U
(upper curve in each panel), the other where five surface layers
have Us ¼ 20t.
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crystal surface. Within this layer—whose depth is a bulk
property and not a surface property of the metal—the
quasiparticle weight decays exponentially on approaching
the surface. The dead layer thickness � inversely depends
on the distance in parameter space to the bulk continuous
Mott transition, where it diverges critically. The physical
significance of � is that of a correlation length of the bulk
metallic state, where the quasiparticle weight acts as an
order parameter, critically vanishing at a continuous Mott
transition. Like other features of the Hubbard model, this
result should, we believe, carry over to real systems with an
ideal Mott transition, not obscured by, e.g., symmetry
breaking phenomena like magnetic order, the critical re-
gion not preempted by strong first order jumps, like that in
the �-� transition of Ce. It could therefore apply to high
temperature V2O3 near the paramagnetic metal-insulator
weakly first order line, notwithstanding complications in-
cluding orbital degeneracy, Hund’s rules, or lattice cou-
plings [34]. One may thus expect a surface dead layer in the
metal phase of V2O3, with thickness increasing (although
not diverging because of the first order transition) on
approaching the Mott-transition line. The associated
Letter by Rodolakis et al. [33] reports photoemission evi-
dence which lends some support to this picture. It is also
interesting to note that an anomalously thick subsurface
dead layer has long been observed in mixed valent
YbInCu4 [35], with a depth not smaller that 60 Å [36].
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