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Electric transport of a zigzag graphene nanoribbon through a steplike potential and a barrier potential is

investigated by using the recursive Green’s function method. In the case of the steplike potential, we

demonstrate numerically that scattering processes obey a selection rule for the band indices when the

number of zigzag chains is even; the electrons belonging to the ‘‘even’’ (‘‘odd’’) bands are scattered only

into the even (odd) bands so that the parity of the wave functions is preserved. In the case of the barrier

potential, by tuning the barrier height to be an appropriate value, we show that it can work as the ‘‘band-

selective filter’’, which transmits electrons selectively with respect to the indices of the bands to which the

incident electrons belong. Finally, we suggest that this selection rule can be observed in the conductance

by applying two barrier potentials.
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Graphene, a single layer of graphite, is one of the most
intriguing new materials, which has been studied vigo-
rously since Novoselov et al. first succeeded in fabricating
it in 2004 [1]. Particularly, its excellent transport properties
such as the high mobility at room temperature have at-
tracted a lot of research interest to apply it in making future
electronic devices [2,3]. However, to realize graphene-
based devices, there is a crucial problem: the characteristic
gapless band structure makes the control of the electric
current rather difficult. Many attempts to overcome this
problem have been made so far, and have given rise to
various beneficial systems such as a graphene quantum dot
[4], epitaxial graphene on SiC substrates [5], and a gra-
phene nanoribbon [6].

We shall focus on a graphene nanoribbon with zigzag
edges [7] (hereafter we call it ‘‘zigzag ribbon’’). A band
structure of a zigzag ribbon has two well-separated valleys
(conically-shaped curves) K and K0 around the vertices of
the first Brillouin zone. In addition, the low-energy bands
(the lowest conduction band and the highest valence band)
are almost flat at the Fermi level due to the edge states
[6,7]. Such a peculiar band structure has motivated many
researchers to investigate the electric transport of a zigzag
ribbon. Wakabayashi and Aoki [8] found that the electric
current is almost entirely blocked by a barrier potential
when the incident energy EI is in the range [0,�] while the
barrier height V0 is in the range [�, 2�] [2� is the energy
separation between the top of the next highest valence band
and the bottom of the next lowest conduction band; see
Fig. 1(a)]. This result is quite different from the case of
bulk graphene, where incident electrons in the low-energy
bands can pass a barrier potential of any height (known as
the Klein paradox [9]). At first, the polarization of two
valleys was considered to be the origin of this current
blocking effect, and then it was named the ‘‘valley-valve
effect’’ [10] by using an analogy from the spin-valve effect
[11]. In a recent study [12], however, Akhmerov et al.

pointed out that the origin is not the valley polarization
and showed that the behavior of the conductance is
strongly connected with the parity of the number of zigzag
chains N.
This striking current blocking effect has the possibility

to control the electric current. In this Letter, we investigate
the role of a barrier potential applied to a zigzag ribbon in
more detail, and suggest the way to control the current in a

FIG. 1 (color online). (a) The band structure of a zigzag ribbon
for the case of N ¼ 30. 2� ’ 3��=N is the energy separation
between the top of the next highest valence band and the bottom
of the next lowest conduction band. (b) A schematic diagram of a
zigzag ribbon. The electrostatic potential varies in the shaded
region. The x axis (y axis) is taken to be perpendicular (parallel)
to graphene lead lines. (c) A schematic diagram of the scattering
process from K0 into K0�2 (see text). The bands are indexed as

shown in the diagram. The colored regions shown in the diagram
correspond to the ones shown in Figs. 4 and 5.
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new light. The single-orbital tight-binding model is em-
ployed to describe the electronic states of a zigzag ribbon.
The Hamiltonian is written as H ¼ �P

i;j�ijjiihjj þP
iVðyiÞjiihij, where the hopping integral �ij ¼ � when i

and j are nearest neighbor sites, and �ij ¼ 0 otherwise.

VðyiÞ is the electrostatic potential energy applied at the site
i, which varies only along the direction of graphene lead
lines [see Fig. 1(b)]. The zero-bias conductance from the
left lead to the right lead is given by the Landauer formula

[13] G ¼ 2e2

h

P
�;�Tð�;�Þ, where the summation runs over

all incoming (�) and outgoing (�) channels, Tð�;�Þ ¼
jt��j2 represents a transmission probability, and t�� is a

transmission coefficient. We specify channels � and � by
the valley and band indices; the right-moving channel in
the band n belonging to the valley K (K0) is denoted by Kn

(K0
n). For example, the transmission probability of the

scattering process from the incoming channel in the band
‘‘0’’ belonging to the valley K into the outgoing channel in
the band ‘‘�2’’ belonging to the valley K0 is denoted by
TðK0�2; K0Þ [see Fig. 1(c)]. Hereafter we call bands with
even (odd) indices ‘‘even’’ (‘‘odd’’) bands. For the calcu-
lation of the transmission coefficients, we adopt the recur-
sive Green’s function method developed by Ando [14,15].

A steplike potential.—Now, we consider the effect of a
smooth steplike potential described as

VðyÞ ¼ V0�ðyÞ; (1)

�ðyÞ ¼
8
><

>:

0 ðy <�dÞ;
ð1=2Þ½sinð�y=2dÞ þ 1� ðjyj � dÞ;
1 ðy > dÞ:

(2)

In the present calculation, we set d ¼ 10a (a is the lattice
constant) and the incident energy is fixed at EI ¼ 0:5�
while V0 is varied from 0 to �. The transmission proba-
bilities are obtained as a function of " ¼ EI � V0. From
the results, we find that scattering processes caused by the
steplike potential obey the following selection rule: the
electrons in the even (odd) bands can be scattered only
into the even (odd) bands and other scattering processes are
entirely restricted. For example, Figs. 2(a) and 2(b) show
the transmission probabilities for � ¼ K0 and � ¼ K1 with
N ¼ 30. The electrons in the band 0 are scattered only into
the bands 0, �2, and �4. Similarly, the electrons in the
band 1 are scattered only into the bands �1, �3, and �5.

The origin of this selection rule is the conservation of the
parity of wave functions [16–20]. As is shown in Fig. 3(a),
a zigzag ribbon has the reflection symmetry with respect to
x ¼ 0 line when N is even. Thus, wave functions must be
either even or odd functions of x. For example, as is shown
in Figs. 3(b) and 3(c), the wave functions of the incoming
channel K0 and the outgoing channels K�2 and K�4 are
even functions, while the incoming channel K1 and the
outgoing channels K0�1 and K�3 are odd functions.
Similarly, other wave functions for even (odd) bands are
even (odd) functions. Since the steplike potential given in

Eq. (1) cannot change the parity of wave functions, only
the scattering processes which preserve the parity of wave
functions can occur. Thus, the transmission probabilities
such as TðK�2; K0Þ have nonzero values and the ones such

FIG. 2 (color online). The transmission probabilities for
(a) � ¼ K0 and (b) � ¼ K1 with N ¼ 30. The insets are the
enlargements of the low-probability regions. Although we do not
show TðK0

2; K0Þ, TðK4; K0Þ, TðK0
4; K0Þ and TðK0

3; K1Þ in the

diagram, they have a very small yet nonzero value (less than
�10�4), respectively. The others (TðK1; K0Þ, TðK2; K1Þ, etc.) are
suppressed to 0. It can be seen that intravalley scatterings are not
always dominant compared to intervalley scatterings, e.g.,
TðK4; K0Þ< TðK0

4; K0Þ.

FIG. 3. (a) A schematic diagram of a zigzag ribbon for even N.
Open and filled circles represent two inequivalent sublattices,
respectively. One can regard a zigzag ribbon as a quasi-one-
dimensional system. In this regime, the columns � and � are
treated as quasi sublattices. (b),(c) The wave functions can be
written as �KnðK0

nÞðx; yÞ ¼ c KnðK0
nÞðxÞeikyy. We show c KnðK0

nÞðxÞ
of (b) the incoming channels K0, K1 on the quasi sublattice � in
the left lead for EI ¼ 0:5�, (c) the outgoing channels K0

�1, K�2,

K�3 and K�4 on � in the right lead for " ¼ �0:5�. The wave
functions on the quasi sublattice � have the same parity as the
one of the wave functions on �. Here N ¼ 30.
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as TðK0
�1; K0Þ are restricted to 0 [see Figs. 2(a) and 2(b)].

On the other hand, whenN is odd, a zigzag ribbon does not
have the reflection symmetry and wave functions are nei-
ther an even nor odd function of x. Consequently, the
selection rule does not exist in this case.

Barrier potentials.—By calculating the transmission
probabilities individually, we have just shown that scatter-
ing processes obey the selection rule when N is even.
However, the existence of the selection rule shown in
Figs. 2(a) and 2(b) cannot be ascertained in experiments
because the conductance is proportional to the sum of all
transmission probabilities. Now, we show that the exis-
tence of the selection rule can be observed in the conduc-
tance by applying two barrier potentials.

First, we consider the case of one barrier potential

VðyÞ ¼ V0½�ðyÞ ��ðy� L0Þ�: (3)

To see the role of this potential, we introduce the following
quantities:

Pe ¼
P

�e;�
Tð�e;�Þ

P
�;� Tð�;�Þ ; Po ¼ 1�Pe ¼

P
�e;�

Tð�e;�Þ
P

�;� Tð�;�Þ ;

(4)

where �e (�o) represents the outgoing channels with even
(odd) index. The results of the calculations are shown in
Fig. 4. We can see at once that some plateaus appear when
" > 0. In this region, the contributions of the transmission
probabilities of the scattering processes between the same
channels (TðK0; K0Þ, TðK1; K1Þ, etc.) are major (’1) and
the others are minor (&10�3) (see Fig. 2). Thus, Pe and Po

are given as Pe ’ N e=N and Po ’ N o=N , respec-
tively. Here N e (N o) represents the number of the
right-moving channels with even (odd) index in the poten-
tial region, and N ¼ N e þN o.

Let us focus on the behavior in the colored regions
shown in the diagram. In the red (or light gray) region
(hereafter called the ‘‘even-pass region’’), " crosses only
the band 0 [see Fig. 1(c)], and thus Pe ’ 1 and Po ’ 0 due
to the selection rule [21]. In contrast, in the blue (or dark
gray) region (hereafter called the ‘‘odd-pass region’’), "
crosses only the band �1, and thus Po ’ 1 and Pe ’ 0.
These results mean that a barrier potential in a zigzag
ribbon plays the role of a ‘‘band-selective filter’’: when "
is tuned to be in the even (odd) pass region, the barrier
potential transmits only the electrons in the even (odd)
bands.

The dashed lines in Fig. 4 denote the results in the

presence of the Anderson disorder potential VimpðriÞ ¼
PðrandomÞ

rm Um�ri;rm . Here we assume that the impurities

are uniformly distributed with a strength Um 2
½��=2; �=2� and a density n ¼ 0:01. As can be seen, the
quality of the band-selective filter is still excellent in such a
disordered system.

Next, we append one more barrier potential to the sys-
tem as follows:

VðyÞ ¼ V0½�ðyÞ ��ðy� L0Þ� þ V 0½�ðy� L0 � L1Þ
��ðy� L0 � L1 � L2Þ�; (5)

where V0 is fixed so that the first barrier potential behaves
as the band-selective filter (i.e., jEI � V0j � �), and V 0 is
varied from 0 to �. Introducing two barrier potentials like
that, one can observe the existence of the selection rule in
the conductance. For example, when " is tuned to be in the
even-pass region, the first potential works as the band-
selective filter which transmits only the electrons in the
even bands. In this case, since the incident electrons in the
odd bands are reflected by this band-selective filter, all the
electrons after passing the first potential belong to the even
bands. Then, one can ignore the odd bands in the second
potential because the scattering processes from even bands
into odd bands are restricted by the selection rule. This
indicates that the odd-pass region in the second potential
turns to the pseudogap region [see Fig. 5(a); the negligible
odd bands are shown as dashed lines]. In fact, as is shown
in the left panel of Fig. 5(b), the conductance of the clean
system is entirely suppressed when "0 ¼ EI � V 0 is in the
odd-pass (pseudogap) region. Similarly, when " is tuned to
be in the odd-pass region, the even-pass region in the
second potential turns to the pseudogap region [see the
right panel of Fig. 5(b)]. We note that the conductance of
the disordered system is also suppressed in the pseudogap
region, although the leak current slightly increases.
Recently, Rycerz et al. [10] calculated the valley polar-

ization of the current transmitted through a barrier poten-
tial, and showed that the transmitted current can be
polarized in one of two valleys by tuning the height of
the potential. This means that a barrier potential may be
used as a ‘‘valley filter’’. They demonstrated the operation
of the valley filter in the cases where the potential changes
abruptly and smoothly. According to the results, however,
the quality of the valley filter is somewhat poor in both
cases when EI < V0, and especially in the case of a smooth
potential the decline is severe (see Fig. 4 of Ref. [10]). In
contrast, whether the potential change is abrupt or smooth,

FIG. 4 (color online). Pe and Po for the clean system (solid
line) and the disordered system (dashed line) with L0 ¼ 50a.
The impurities are distributed in the range y 2 ½�50a; 100a�
and each dashed line is an average over 10 realizations of
random potentials. The integral ratios shown in the left (right)
panel represent the values of N e=N (N o=N ) (see text). The
colored regions shown in the diagram correspond to the ones
shown in Fig. 1(c).
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and even in the presence of disorder, the quality of the
band-selective filter we have suggested here is sufficiently
high even in the region EI < V0.

Here we discuss the feasibility of an experiment to
confirm these parity effects. In recent years, process tech-
nologies for making graphene-based devices have made
rapid strides. Particularly, local electrostatic gates [22] and
only sub-10 nm wide (N ’ 10) graphene nanoribbon field-
effect transistors [23] are already realized in experiments.
Thus, if an edge shape of a graphene nanoribbon can be
controlled, then one can confirm the parity effects in
experimental results. Very recently, Koskinen et al. pre-
dicted that zigzag edges are thermodynamically metastable
and hexagonal rings should be reconstructed into pentago-
nal and heptagonal rings [24]. Even in this case, the parity
effects survive because the relation between band indices
and parity of wave functions do not change [25]. We thus
expect that it will be possible to carry out an experiment
and to confirm the parity effects in the near future.

In summary, we have studied electric transport of a
zigzag ribbon through a steplike potential or a barrier
potential by using the recursive Green’s function method.
It has been shown that scattering processes in a zigzag
ribbon obey the selection rule for the band indices when
the number of zigzag chains N is even. Moreover, we have

also shown that a barrier potential can play the role of the
band-selective filter, which transmits only the electrons in
the bands with either even or odd index depending on " ¼
EI � V0. Finally, we have suggested that the selection rule
can be observed in the conductance by applying two barrier
potentials to a graphene ribbon.
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FIG. 5 (color online). (a) Schematic diagrams of band struc-
tures and the barrier potential described as Eq. (5). (b) The
conductances for the clean system (solid line) and the disordered
system (dashed line) with L0 ¼ L2 ¼ 50a and L1 ¼ 100a. The
impurities are distributed in the range y 2 ½�50a; 250a� and
each dashed line is an average over 10 realizations of random
potentials. In the left (right) panel, V0 is tuned to be 0:426�
(0:574�) so that " is in the even (odd) pass region, and thus the
odd (even) pass region in the second potential turns to the
pseudogap region. In the region "0 < 0, only interband scatter-
ings occur, which makes the behavior of the conductances
complicated.

PRL 102, 066803 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 FEBRUARY 2009

066803-4


