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We present model wave functions for quasielectron (as opposed to quasihole) excitations of the unitary

Zk parafermion sequence (Laughlin, Moore-Read, or Read-Rezayi) of fractional quantum Hall states. We

uniquely define these states through two generalized clustering conditions: they vanish when either a

cluster of kþ 2 electrons is put together or when two clusters of kþ 1 electrons are formed at different

positions. For Abelian fractional quantum Hall states (k ¼ 1), our construction reproduces the Jain

quasielectron wave function and elucidates the difference between the Jain and Laughlin quasielectrons.
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The connection between conformal field theory (CFT)
and fractional quantum Hall (FQH) states [1,2] provides
model wave functions for non-Abelian ground states and
their quasihole excitations. A central result of the CFT-
FQH connection has been the prediction that the addition
of several units of flux creates multiple degenerate pinned
quasihole states which exhibit non-Abelian statistics. In
particular, some of the Read-Rezayi (RR) [3] series of non-
Abelian states are thought to be experimentally relevant to
the � ¼ 5=2 and � ¼ 12=5 FQH plateaus.

Despite these successes, the FQH-CFT connection has
failed to produce unique model wave functions for the
Laughlin quasielectron states. This is due to the fact that,
until recently, previous attempts at introducing quasielec-
trons invariably necessitated using antiholomorphic coor-
dinates z? (in some form) and then projecting to the lowest
Landau level (LLL); this procedure can be done in several
ways, leading to different polynomial wave functions. For
the non-Abelian states, quasielectron wave functions are
not known. Recently, several authors [4] have succeeded in
expressing the Jain model quasielectron wave functions for
the Laughlin hierarchy sequence as CFT correlators.
However, several Abelian quasielectron models exist
(due to Laughlin, Jain, Girvin, Halperin, and others), and
the fundamental physical differences between them are not
understood.

In this Letter we provide an explicit construction of LLL
quasielectron model wave functions for the Zk RR se-
quence. The RR Zk FQH ground states are uniquely de-
fined as the smallest degree polynomials that vanish when
kþ 1 particles cluster together. Our purpose is to find
similar physical clustering conditions (Hamiltonians) that
uniquely define the one-quasielectron state. Since quasie-
lectrons involve the removal of flux, and hence the low-
ering of the total degree of the polynomial wave function, a
one-quasielectron wave function of the RR states can no
longer vanish when kþ 1 particles come together. We find
two kinds of quasielectrons: an Abelian one-quasielectron

wave function of the RR Zk sequence vanishes when 2kþ
1 particles come together and when two clusters, each of
kþ 1 particles, are formed at different positions. A non-
Abelian one-quasielectron wave function vanishes when
kþ 2 particles come together and when two clusters, each
of kþ 1 particles, are formed at different positions. For
k ¼ 1 (Laughlin states), the two clustering conditions are
equivalent; our one-quasielectron states turn out to be
identical to Jain’s. The clustering conditions they satisfy
explain the numerically observed energetic superiority of
Jain’s quasielectrons over Laughlin’s.
We represent a partition � with length ‘� � N as a

(bosonic) occupation-number configuration nð�Þ ¼
fnmð�Þ; m ¼ 0; 1; 2; . . .g of each of the LLL orbitals

�mðzÞ ¼ ð2�m!2mÞ�1=2zm expð�jzj2=4Þ with angular mo-
mentum Lz ¼ m@ (see Fig. 1), where, for m> 0, nmð�Þ is
the multiplicity of m in �. It is useful to identify the
‘‘dominance rule’’ [5] (a partial ordering of partitions � >
�) with the ‘‘squeezing rule’’ [6] that connects configura-
tions nð�Þ ! nð�Þ: ‘‘squeezing’’ is a two-particle opera-
tion that moves a particle from orbitalm1 tom

0
1 and another

from m2 to m0
2, where m1 <m0

1 � m0
2 <m2, and m1 þ

m2 ¼ m0
1 þm0

2; � >� if nð�Þ can be derived from nð�Þ
by a sequence of ‘‘squeezings’’ (see Fig. 1). An interacting
LLL polynomial P� indexed by a root partition � is
defined as exhibiting a dominance property if it can be
expanded in occupation-number noninteracting states
(monomials) of orbital occupations nð�Þ obtained by
squeezing on the root occupation nð�Þ:

P� ¼ m� þ
X
�<�

v��m�: (1)

The v�� are rational number coefficients. Partitions � can

be classified by �1, their largest part. When any P� is
expanded in monomials m�, no orbital with m> �1 is

occupied. P� can be interpreted as states on a sphere
surrounding a monopole with charge N� ¼ �1 [7].
Uniform (ground) states on the sphere satisfy the condi-
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tions Lþc ¼ 0 [highest weight (HW)] and L�c ¼ 0
[lowest weight (LW)] where Lþ ¼ E0, and L� ¼ N�Z�
E2, where Z � P

izi, and En ¼
P

iz
n
i @=@zi. In a previous

Letter [8], we proved, by using the HWand LW conditions,
that the Jack polynomials (Jacks) of root occupation
nð�0ðk; 2ÞÞ ¼ ½k0k0k . . . k0k� and Jack parameter �k;r ¼
�ðkþ 1Þ=ðr� 1Þ are the ground-state wave functions of
the RR Zk sequence. The RR quasihole wave functions are
also Jacks of root occupation numbers satisfying a ðk; 2Þ of
a more general ðk; rÞ Pauli principle which allows no more
than k particles in r consecutive angular momentum orbi-
tals. For the Jacks, the coefficients v�� are explicitly

known by recursion [5]. In our construction, we require
the squeezing rule be satisfied also for the quasielectron
states.

Quasielectron states satisfy only the HW condition
Lþc ¼ 0 and should represent a small local perturbation
of the otherwise featureless ground-state density. We now
present the root occupation nð�Þ and a set of clustering
conditions which uniquely define the quasielectron wave
functions. We start with the Abelian one-quasielectron

added to the � ¼ k
2 Jacks J�ðkþ1Þ

�0
k;2

ðz1; . . . ; zNÞ (RR ground

states) of root occupation nð�0
k;2Þ ¼ ½k0k0k0k . . . k0k�. By

analogy with the Abelian quasihole, this should be a state
of total angular momentum L ¼ N=2. We add three fluxes
to the ground state and obtain the occupation number n ¼
½000k0k0k . . . k0k�. The Abelian one-quasielectron state is
obtained by adding 2k particles in the zeroth orbital (north
pole): nð�0

k;1 qpÞ ¼ ½2k00k0k0k . . . k0k�. Simple counting

gives us N� ¼ 2
k ðN � kÞ � 1, the correct flux for an N

particle � ¼ k
2 Read-Rezayi state with an Abelian one-

quasielectron. Away from the north pole, the quasielectron
root occupation relaxes to the bulk sequence ½k0k . . . k0k�.

The root occupation and the HW condition do not define
the one-quasielectron polynomial wave function uniquely.
We now search for a way to uniquely define the polyno-
mial. In a previous paper [9] we showed that the HW
condition on the Jacks gives an infinite set of Jacks at � ¼
�ðkþ 1Þ of occupations nð�0

k;2;sÞ ¼ ½n00sþ1k0k0k0k . . .�
with n0 ¼ ðkþ 1Þðsþ 1Þ � 1, and s � 0 a positive inte-
ger. For s ¼ 0 these are the RR FQH ground states. For s �
1, we have n0 > k and hence these configurations contain
an excess of charge at the north pole, and heal in the bulk to
the RR ground-state configurations. However, as the
Abelian s-quasielectron state in the Zk sequence should
have N� ¼ 2

k ðN � kÞ � s, the orbital occupation nð�0
k;2;sÞ

contains too much charge at the north pole. To obtain the
correct N�, we must ‘‘subtract’’ s particles from the zero
orbital of the occupation sequence nð�0

k;2;sÞ ¼
½n00sþ1k0k0k0k . . .� of the Jacks given in [9], to obtain
the root occupation configuration nð�0

k;s qpÞ ¼ ½kðsþ
1Þ0sþ1k0k0k . . . k0k�. At the explicit, first quantized wave
function level, this ‘‘subtraction’’ can be done by symmet-
rization and padding of the Jack polynomial J

�k;r

�0
k;2;s

[10], but

a simpler expression will be presented shortly. Defined in
this way, the s-quasielectron state shares a clustering prop-
erty with J

�k;2

�0
k;2;s

that we obtained in [9]: it vanishes when

sþ 1 clusters of kþ 1 same-position particles are formed.
Being HW states dominated by nð�0

k;s qpÞ, they also vanish

when kðsþ 1Þ þ 1 particles come together at the same
point as the sþ 2’s power of the difference between coor-
dinates [9]. The angular momentum of the Abelian
s-quasielectron configurations above is lð�0

k;s qpÞ ¼
Lzð�0

k;s qpÞ ¼ s
2N. The above root configurations define

the maximum angular momentum Abelian
s-quasielectron states (bunched up at the north pole) of
the Laughlin, Read-Moore, and Read-Rezayi sequence.
Hence, our HW Abelian (s ¼ ) one-quasielectron state is
uniquely defined as the smallest degree polynomial satis-
fying the clustering conditions:

Pðz1 . . . z1|fflfflffl{zfflfflffl}
kþ1

; z2 . . . z2|fflfflffl{zfflfflffl}
kþ1

; z2kþ3; z2kþ4; . . . ; zNÞ ¼ 0

Pðz1 . . . z1|fflfflffl{zfflfflffl}
2k

; z2kþ1; z2kþ2; . . . ; zNÞ �
YN

i¼2kþ1

ðz1 � ziÞ3:
(2)

For N� ¼ 2
k ðN � kÞ � 1, the counting developed in [9]

gives exactly N þ 1 linearly independent polynomials sat-
isfying Eq. (2). They correspond to the different lz’s of the
l ¼ N

2 multiplet of states. The HW state ðl; lzÞ ¼ ðN2 ; N2Þ sat-
isfies a more stringent clustering condition than Eq. (2):

Pðz1; . . .z1|fflfflffl{zfflfflffl}
2k

;z2kþ1;z2kþ2; . . . ;zNÞ¼
YN
i¼2

ðz1�ziÞ3

�J�ðkþ1Þ
�0ðk;2Þ ðz2kþ1; . . . ;zNÞ;

FIG. 1 (color online). Landau problem on a disk. Orbital
occupation to monomial basis conversion and squeezing rule
examples.
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where nð�0ðk; 2ÞÞ ¼ ½k0k0k . . . k0k� and

J�ðkþ1Þ
�0ðk;2Þ ðz2kþ1; . . . ; zNÞ is the RR Zk ground state for

N � k particles. An alternate definition which also
uniquely fixes the HW one-quasielectron state is requiring
that it satisfies HW, dominance, and the first clustering
condition in Eq. (2). The second clustering condition
in Eq. (2) is then automatically obeyed.

We now obtain explicit first quantized expressions of our
states. For the Laughlin, ðk; rÞ ¼ ð1; 2Þ, � ¼ 1=2, state we
find that the one-quasielectron HW wave function P�0ð1;1Þ
involves one symmetrization over a Jack found in [9]

P�0
1;1 qp

ðz1; . . . ; zNÞ ¼ SymJ�2
�0
1;2;2

ðz1; z1; z2; z3; . . . ; zNÞ: (3)

Model HW wave functions for the s-qp state of maximum
angular momentum l ¼ s N

2 are obtained by further sym-

metrization over the Jacks of [9]: P�1;s qp
ðz1; . . . ; zNÞ ¼

SymJ�2
�0
1;2;sþ1

ðz1; z1; z2; z2; . . . ; zs; zs; zsþ1; zsþ2; . . . ; zNÞ. For

k > 1, similar expressions can be obtained [10]. How-
ever, we found that our wave functions can be written in
compact form using an operator first introduced by Jain
[11]:

Oð@1; . . . ;@N;z1; . . . ;zNÞ¼Det

@1 @2 .. . @N
1 1 .. . 1
z1 z2 .. . zN
..
. ..

. ..
.

zN�2
1 zN�2

2 .. . zN�2
N

0
BBBBBB@

1
CCCCCCA
;

where Det denotes the determinant. We find our HW
Abelian one-quasielectron states of the RR Zk sequence,
as defined by symmetrization over Jacks, are identical to

P�0
k;1 qp

ðz1; . . . ; zNÞ ¼ 1

�
OJ�ðkþ1Þ

�0
k;2

ðz1; . . . ; zNÞ; (4)

where � ¼ Q
N
i<jðzi � zjÞ is the Vandermonde determinant

and J�ðkþ1Þ
�0
k;2

ðz1; . . . ; zNÞ is the Jack polynomial FQH ground

state of the RR Zk sequence [8]. The right-hand side of
Eq. (4) is a symmetric polynomial as the determinant
operator O is antisymmetric in the zi’s. We have
checked that P�0

k;1 qp
in Eq. (4) exhibits a dominance

property Eq. (1) with the root occupation nð�0
k;1 qpÞ¼

½2k00k0k0k0k . . .k0k�, and satisfies the clustering condi-
tions in Eq. (2). The lz ¼ �N=2 . . .N=2 multiplet can be
obtained by successively applying the L� operator on
P�0

k;1 qp
. These states also satisfy the clustering conditions

in Eq. (2). The density profiles for the Read-Moore � ¼ 1
and the Read-Rezayi � ¼ 3

2 quasielectron are plotted in

Fig. 2. For k ¼ 1 Laughlin states, by Eq. (4) our quasielec-
tron wave functions can be seen to be identical to Jain’s
[11]. Our definition of the quasielectron through the clus-
tering conditions Eq. (2) provides a physical explanation

for the numerical finding [12] that Jain’s quasielectron has
a lower energy than Laughlin’s [13]. We found that
Laughlin’s original quasielectron wave function [13] sat-
isfies the second of the clustering conditions in Eq. (2) but
not the first one. We have checked that Jain’s quasielectron
has a lower energy than Laughlin’s due to the fact that it
satisfies one extra clustering condition.
Thus far we have focused on the bosonic (m ¼ 0) Zk

FQH states. For integer m � 1, the Read-Rezayi se-
quence at filling � ¼ k=ðkmþ 2Þ has the wave func-
tion �m

RR ¼ Q
i<jðzi � zjÞmJ�k;2

�0
k;2

. The HW quasielectron

wave function is c k;1 qp
�¼ðk=kmþ2Þðz1; . . . ; zNÞ ¼

Q
N
i<j¼1ðzi �

zjÞmP�0
k;1 qp

ðz1; . . . ; zNÞ. The above construction of the qua-

sielectron trivially generalizes to the entire ðk; rÞ Jack
sequence of FQH states introduced in [8].
We now construct the non-Abelian quasielectron states

for the RR Zk sequence. A non-Abelian fractionalized
quasielectron will always be accompanied by a non-
Abelian fractionalized quasihole, and will be composed
of an electron bound to a fractionalized quasihole. As the
Abelian quasihole has angular momentum l ¼ N

2 , each

fractionalized non-Abelian quasihole (and fractionalized
quasiparticle) has l ¼ N

2k . The basic neutral excitation of

the system is a fractionalized one-quasielectron one-
quasihole state at the same flux as the FQH RR ground
state N� ¼ 2

k ðN � kÞ. As a fractionalized quasielectron

and quasihole are distinguishable particles, angular mo-
mentum addition gives multiplets of states l � N

2k � N
2k ¼

N
k ;

N
k � 1; Nk � 2; . . . ; 2; 1; 0 (the l ¼ 1 state will be miss-

ing). The HW l ¼ N
k state corresponds to completely sep-

arating the fractionalized quasielectron at the north pole
from the fractionalized quasihole at the south pole. It is
uniquely defined by the dominated polynomial of root
occupation nð�0

k;1 qp-1 qhÞ ¼ ½kþ 10k� 11k� 11k�
1 . . . 1k� 1�, satisfying the clustering conditions

FIG. 2 (color online). Exact HWAbelian one-quasielectron (at
the north pole) (dashed lines) density profiles, in units of
kN=4�ðN � kÞl2, for the Moore-Read (k ¼ 2) and Read-
Rezayi k ¼ 3 N-particle states on the sphere. The exact LW
Abelian one-quasihole density profiles (solid lines) are also
plotted for reference.
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Pðz1; . . . ; z1|fflfflfflfflffl{zfflfflfflfflffl}
kþ1

; z2; . . . ; z2|fflfflfflfflffl{zfflfflfflfflffl}
kþ1

; z2kþ3; z2kþ4; . . . ; NÞ ¼ 0;

Pðz1; . . . ; z1|fflfflfflfflffl{zfflfflfflfflffl}
kþ2

; zkþ3; zkþ4; . . . ; zNÞ ¼ 0:

(5)

The HW (lz ¼ l) states of the l ¼ N
k � 1; . . . ; 2; 0 mul-

tiplets can be uniquely defined by imposing HW, along
with first clustering condition in Eq. (5), on dominated
polynomials with root occupations:

l ¼ N

k
; ½kþ 10k� 11k� 11 . . . 1k� 11k� 1�;

l ¼ N

k
� 1; ½kþ 10k� 11k� 11 . . . 1k� 10k�;

l ¼ 2; ½kþ 10k� 10k0k . . . k0k0k�;
l ¼ 0; ½k0k0k0k . . . k0k0k�: (6)

The second clustering condition in Eq. (5) is then auto-
matically obeyed. Successive application of the L� opera-
tor yields the lz ¼ l; . . . ;�l wave functions, which also
obey the clustering conditions in Eq. (5). We can in fact
prove that our states satisfy a stronger clustering condition
than in Eq. (5):

Pðz1 . . . z1|fflfflffl{zfflfflffl}
kþ1

;z2 . . . z2|fflfflffl{zfflfflffl}
k

; z2kþ2; z2kþ3; . . . ; zNÞ

� ðz1 � z2Þ2kþ1
YN

i¼2kþ2

ðz2 � ziÞ2ðz1 � ziÞ2: (7)

The root occupation numbers for the Moore-Read ground
state and its quasiparticle excitations are shown in Fig. 3.
Their density profiles are plotted in Fig. 4.

Just as in the Abelian case, there are several ways to
define the non-Abelian one-quasielectron one-quasihole
states, which lead to the same result. Requiring HW, domi-
nance with respect to the root occupations Eq. (6) and the
first of the clustering conditions in Eq. (5) uniquely defines
the states. The second clustering condition in Eq. (5) is
then automatically satisfied. Alternatively, Eq. (7) and the
second clustering in Eq. (5) also uniquely define the
Hilbert space of one-quasielectron one-quasihole states,
although in this case further angular momentum projection

is needed to obtain ~L eigenstates. For k ¼ 1, z2 is not
different from z3; . . . ; zN , and the non-Abelian clustering
conditions become identical to the Abelian ones (the
Laughlin states support only Abelian excitations). We
can ‘‘energetically’’ justify our quasielectron-quasihole
wave functions. As they cannot vanish when kþ 1 parti-
cles come together (this condition defines the RR Zk

ground-state and pure quasiholes), the lowest ‘‘energy’’
configuration that one can create is to require the wave
function vanish in a kþ 2 particle cluster.
In this Letter we have generalized the clustering con-

ditions that define the RR FQH ground states and quasi-
holes to include the Abelian and non-Abelian quasielectron
excitations. For the Laughlin state, the Jack one-
quasielectron excitations are identical to Jain’s.
This work was supported in part by the U.S. National
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FIG. 3 (color online). Root occupation numbers for the highest
weight bosonic Moore-Read ground state, Abelian (charge �e)
quasihole, fractionalized quasihole (charge �e=2), Abelian
(charge e) quasielectron, and fractionalized (charge e=2) qua-
sielectron. The fractionalized quasielectron is a composite par-
ticle containing one electron, denoted here by two yellow star
symbols, and a fractionalized quasihole (one blue circle).

FIG. 4 (color online). Exact HW non-Abelian quasielectron-
quasihole density profiles, in units of kN=4�ðN � kÞl2, for the
Moore-Read (k ¼ 2) and Read-Rezayi (k ¼ 3) N-particle states
on the sphere. The fractionalized quasielectron is at the north
pole while the fractionalized quasihole is at the south pole. In the
thermodynamic limit, the region in the middle of the sphere at
density one will dominate the density function.
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