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The Hall conductivity �xy of Dirac electrons with a spin-orbit interaction is examined. It is shown that

there is an unconventional contribution to �xy generated by the interband effects of a magnetic field,

which is remarkable near the band edges and does not depend on impurity scatterings so much, suggesting

the same origin as the known large diamagnetism. Correspondingly, the Hall coefficient exhibits unex-

pected peaks at around the band edges. Implications of the present results to bismuth alloys are discussed.
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Electrons in a periodic potential can be described by
Bloch band theory, which is the basis of understanding the
electronic properties of solids. In this theory, it is natural to
expect that the effects of an external magnetic field H are
described by the effective Hamiltonian H eff ¼ Enðkþ
eA=cÞ except for the Zeeman effect, where EnðkÞ is the
nth Bloch band forH ¼ 0. This simple procedure has been
proven to be very useful for interpreting many phenomena.
Nevertheless, this substitution, k ! kþ eA=c, or the
Peierls substitution, is insufficient in principle [1,2]; elec-
trons under a magnetic field are not confined in a single
Bloch band, but undergo complex interband oscillations.
These effects will be referred to as interband effects of a
magnetic field, which are not contained in the Peierls
substitution.

The importance of the interband effect has been recog-
nized in the studies of the orbital susceptibility, �. In most
cases, � obtained by the Peierls substitution, the Landau-
Peierls (LP) formula [1] is used for a comparison with the
experimental results. However, the LP formula fails com-
pletely in some cases, e.g., to explain the anomalous be-
havior of graphite or bismuth. To cope with this puzzle,
Adams criticized the use of the LP formula in cases where
the band gap is much smaller than the Fermi energy [3]; Bi
just satisfies this condition. In such cases, the interband
effect of a magnetic field may make large contributions to
�. McClure succeeded to explain the large diamagnetism
of graphite [4], based on the particular band structure
similar to the (2� 2) Dirac electron. This work is the basis
for the recent active studies of graphite-type Dirac elec-
trons, such as graphene [5–8] and �-ET2I3 [9].

As for Bi, it is more complicated because of the strong
spin-orbit coupling of the order of 1.5 eV. The spin-orbit
interaction couples with the different Bloch bands, which
causes a remarkable effect of interplay between spins and
orbital motion of electrons. The effective g factor becomes
much larger than that of free electrons. (g can exceed 200
for Bi.) The orbital diamagnetism and the spin paramag-
netism are mixed together in an essential way by the strong
spin-orbit coupling, so that they cannot be separated. By

considering the strong spin-orbit couplings and the asso-
ciated interband effects due to a special band structure
similar to Dirac electrons (here 4� 4), the anomalously
large diamagnetism of Bi was clearly explained [10].
Although the orbital magnetism of Bi has been under-

stood, the transport properties of this Bi type, i.e., the Dirac
electrons with the strong spin-orbit coupling, have not been
examined so far in detail contrary to the graphite type [5,6].
In this Letter, we investigate Hall effects of the Dirac
electrons of the Bi type, keeping in mind that the interband
effects of the magnetic field essentially affect orbital mag-
netism. It is to be stressed that the Dirac electrons of the Bi
type belong to a different class from that of the graphite
type, where the spin-orbit coupling is negligibly small. The
Hamiltonian of the Bi type can be written in terms of 4� 4
matrices, whereas that of the graphite type can be by 2� 2
matrices. These two types have similar dispersions, but
they are quite different, especially in the interband effects
of a magnetic field. Actually, we find a new contribution to
the Hall conductivity, �xy, due to the interband effects.

Since this new contribution to �xy is remarkable near the

band edges and does not depend on impurity scattering so
much, we consider the possibility that this new contribu-
tion is associated with the diamagnetic current in spite of
the difference between them; the diamagnetic current is
equilibrium quantity, while �xy is not. It is also found that

the unexpected peaks of the Hall coefficient appear at
around the band edges. Implications of the present results
to Bi alloys are also discussed.
The model we will study is a two-band model which

consists of a pair of doubly degenerate bands where their
extrema is not at the center of the Brillouin zone. Such a
two-band model was introduced for Bi by Cohen and
Blount with a simple one-electron Hamiltonian [11]:

H ¼ p2

2m
þ V þ r2V

8ðmcÞ2 þ
p � s� rV
2ðmcÞ2 ; (1)

where V is the crystal potential, s is the spin, and the last
term is the spin-orbit interactions. Wolff derived an effec-
tive Hamiltonian of Eq. (1) in the form which is essentially
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identical to the Dirac Hamiltonian [12,13]:

H ¼ ��þ iv
X

�

k����;¼
� 0 ivkz ivðkx � ikyÞ
0 � ivðkx þ ikyÞ �ivkz

�ivkz ivð�kx þ ikyÞ �� 0
�ivðkx þ ikyÞ ivkz 0 ��

0
BBB@

1
CCCA; (2)

where �i and � are the 4� 4 matrices that appear in the
Dirac theory. (Following Wolff we have discarded the
p2=2m term since this term is usually small in Bi.)
Hereafter, the origin of the energy is taken at the center
of the band gap 2�. This ‘‘relativistic’’ Hamiltonian al-
ready includes spin-orbit interactions, which is very strong
in Bi, and can be expressed only in terms of 4� 4matrices.
This is essentially different from that of the graphite type,
which has negligibly small spin-orbit interactions and then
can be written in terms of 2� 2 matrices [5–9,14]. For
pure Bi, these two-bands are located at the L point for
electrons and the T point for holes. Although both carriers
are essentially described by the tilted Dirac equations
[9,12], the velocity of electrons, v, are assumed to be
isotropic for simplicity in order to avoid complexities,
which are not essential to present studies [13].

It should be emphasized here that this Hamiltonian is not
in the Bloch representation but in the Luttinger-Kohn
representation [15], in which the wave function, c nk, is
expressed in the form c nk ¼ unk0ðrÞeik�r, unk0 being the

periodic part of the Bloch function at k0, e.g., the L point
for electrons or the T point for holes. The wave function
under the magnetic field is correctly represented only in
this representation [16]. Moreover, in this representation,
we can obtain the gauge-invariant results [16,17]. Note that
this representation is exact and related to the Bloch wave
function by a unitary transformation.

The conductivity, �xx, and the Hall conductivity, �xy,

are calculated on the basis of the Kubo formula in the same
way as Ref. [16]. The calculation is straightforward but
rather lengthy. The final expressions are summarized as

�xx¼� e2

�3v

Z 1

�1
d"f0ð"��Þ

Z 1

0
dX½F1ð";XÞ

�F2ð";XÞ�; (3)

F1ð";XÞ ¼
X2ð"2 þ�2 � 1

3X
2 ��2Þ

fð"þ i�Þ2 �X2 ��2gfð"� i�Þ2 �X2 ��2g ;
(4)

F2ð"; XÞ ¼
X2fð"þ i�Þ2 � 1

3X
2 � �2g

2fð"þ i�Þ2 � X2 � �2g2 þ c:c:; (5)

�xy¼ e3vH

12�2c

Z 1

�1
d"½F3ð"Þfð"��Þ

þF4ð"Þf0ð"��Þ�sgnð"Þ; (6)

F3ð"Þ ¼ "þ i�

fð"þ i�Þ2 ��2g3=2 þ c:c:; (7)

F4ð"Þ¼�2�4��2�2þð�2�"2Þ2þ2i�3"�i��ð�2�"2Þ
2�2"2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2��2��2þ2i�"

p

þc:c:; (8)

where fð"Þ is the Fermi distribution function, and � the
chemical potential. Here we have introduced a finite damp-
ing, �, for electrons as in Ref. [7] to represent the effects of
impurity scattering present in actual materials. (We assume
� to be constant in order to make our argument as simple
and transparent as possible, although Shon and Ando have
indicated that � somewhat depends on energy and momen-
tum in the case of graphene [14].)
The� dependence of �xx and�xy at T ¼ 0 are shown in

Figs. 1(a) and 1(b), respectively. The normalization factors
are taken to be �xx0 ¼ e2=�2v and �xy0 ¼ e3v=12�2c.

Away from the band edge, j�j � �, �xx / �2, and �xy /
��, which are consistent with the Peierls substitution [18].
In the band-gap region, j�j< �, both conductivities have
small values since we have assumed a finite �.
The Hall coefficient defined by RH ¼ �xy=�

2
xxH is

shown in Fig. 1(c) where the normalization is taken to be
RH0 ¼ �xy0=�

2
xx0H. For j�j � �, RH / ���3 as is ex-

pected from the properties of �xx and �xy [18]. For j�j �
�, on the other hand, it is found that RH changes its sign
through� ¼ 0, and exhibits remarkable peaks at� ’ ��.
In the metallic region (e.g., �=� ¼ 3:0), �xx / ��1 and
�xy / ��2. Thus, RH does not depends on � as in the free-

electron case. On the other hand, these relations are broken
when � � �. In the insulating region (e.g., �=� ¼ 0:1),
we find that �xx / �2, �xy / �2:75, and RH / ��1:25, while

at the band-edge region (e.g., �=� ¼ 1:0), �xx / �0:75,
�xy / ��0:5, and RH / ��2; namely, RH strongly depends

on �. Thus the finite value of RH in the insulating region is
due to the finite �, which avoids the theoretical problem
concerning the order of the zero-frequency and zero-
temperature limits. Since the � dependence of RH at the
band edge is stronger than in the insulating region, clear
peak structures appear in the limit of � ! 0 as shown in
Fig. 1(c). This peak structure appears even within the
intraband approximation (discussed later), and the inter-
band contribution further increases the peak structure [the
inset of Fig. 1(c):Rintra

H � �intra
xy =�2

xx].

The sign change of RH has been seen for the case of 2�
2 Hamiltonian with � ¼ 0 [7]. In this case, however, the
peak structures appear simultaneously with the sign change
at� ¼ 0. In contrast, our calculation for� � 0 shows that
the peaks appear at the band edges which are away from
the sign change at � ¼ 0. Gusynin and Sharapov have
shown that a similar sign change occurs in the Hall angle,
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�H ¼ arctanð�xy=�xxÞ, but there is no anomaly in �H at

the band edges according to their calculation [6].
Now we study the interband effects of the magnetic field

on �xy. We extract the interband contribution, �inter
xy , by

subtracting the intraband contribution, �intra
xy , from �xy,

namely, �inter
xy ¼ �xy � �intra

xy . Here �intra
xy is the Hall con-

ductivity calculated within the intraband approximation,
i.e., the Peierls substitution (cf. [16]), which is given in the
present case as follows:

�intra
xy ¼ � e3vH

6�3c

X

n¼�

Z 1

�1
d"f0ð"��Þ

�
Z 1

0
dX

nX4

½EnðXÞ�3
4�3

3½ð"� EnðXÞÞ2 þ �2�3 ; (9)

where E�ðXÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ �2

p
. The obtained interband con-

tribution �inter
xy is shown in Fig. 1(d). The remarkable

property is that �inter
xy takes the largest value at the band

edge, and becomes smaller away from the band edge,
contrary to �intra

xy . Furthermore, �inter
xy does not depend on

� so much, while �intra
xy does. [Note that the vertical axis of

Fig. 1(b) includes a factor �2.] This indicates that �inter
xy has

a different nature from �intra
xy .

The property of �inter
xy against � and � is quite similar to

that of the orbital susceptibility �. The behavior of �
calculated in the gauge-invariant Kubo formula [17] is
shown in the inset of Fig. 1(d). � takes the largest value
for j�j & �, and becomes smaller away from the band
edge. Also, � does not depend on � so much. (Near the
band edge and insulating region, the intraband contribu-
tion, the LP formula vanishes. As a result, almost whole �
originates from the interband contributions.) These simi-
larities strongly suggest the correlation between �inter

xy and

�. The physical origin of this correlation can be understood
as follows. In the insulating region, electrons in a magnetic
field circulate locally and make a diamagnetic current.
There are no electrons going through the crystal because
of the band gap. In the band-edge region, in contrast, the
electrons start to be transferred from local orbitals to the
neighboring orbitals due to some scattering. These pro-
cesses will generate contributions to the Hall conductivity,
�inter

xy . The diamagnetic current decreases away from the

band edge as is known from the behavior of �.
Correspondingly, j�inter

xy j actually decreases away from

the band edge. This supports the present picture. Note the
difference between the present interband effect and the
effect of the magnetic break down [19]. The former is
the transition between different energies with an equal
wave number which is of importance in the weak field.
The later is quantum tunneling in which electrons hop to
different wave numbers with an equal energy, which is of
importance in the strong field.
Finally, let us discuss the implications of the present

results to Bi. Bi and its alloys have been attracting renewed
interest in the context of the spin Hall effect [20,21] and the
3D fractional quantum Hall effect [22]. In spite of these
fascinating behaviors, there has been no theoretical analy-
sis especially in the weak field limit. In order to understand
these phenomena, it is indispensable to understand the
motion of carriers in a magnetic field. Some measurements
of RH in Bi have already exhibited the peak structures and
the rapid sign changes with respect to � [23,24]. They are,
however, not consistent with each other. This would be due
to the purity of samples or the inhomogeneity of either
chemical or external pressure. For further investigations,
we need some guidelines. Here, we propose a clear-cut
measurement, and classify the experimental situations,
which have not been thoroughly clarified in spite of the
intensive studies since the 1960s.
It will be rather difficult to find the peak of RH at � ’

�� when the peak is very sharp. So we propose a simul-
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FIG. 1. The chemical-potential dependences (at T ¼ 0) of
(a) �xx, (b) �xy, (c) RH, and (d) the interband contribution to

�xy. The dashed line in the inset of (c) indicates Rintra
H for a

particular choice of � ¼ 0:1. The inset of (d) is � vs �, where
�0 ¼ 4e2v=15c2�2.
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taneous measurement of � together with that of RH to
observe the band-edge property in a more transparent
way. A clear kink of � at � ’ �� has been actually
observed experimentally [25]. Thus, the kink in � can be
used to identify the band edge, and then we can expect the
peak of RH in the same region.

For the analysis of the experiments, it is important to
distinguish following three experimental situations, which
have not been recognized before even though the differ-
ences are crucial: (a) undoped (ne ¼ nh), (b) hole doped
(ne < nh), and (c) electron doped (ne > nh) Bi as illus-
trated in Fig. 2. Here, x denotes some controlling parame-
ters which changes the relative position of the electron and
hole band, e.g., external pressure or alloy concentration
[26]. For the undoped case [Fig. 2(a)], a clear band-edge
property—a peak in RH and a kink in �—can be seen,
since ne and nh vanish simultaneously at x ¼ x1. This
band-edge property will be clearer when H is applied
perpendicular to z (trigonal axis), since the contribution
of electrons is dominant [10]. In this case, the sign change
in RH will not be observed, since � is always positive for
electrons. (The conduction band at the T point is located at
much higher energies from �.) For the hole doped case
[Fig. 2(b)], on the other hand, � of electrons can be
negative for x > x2, so that the sign change in RH is
possible. However, the band-edge property in RH will not
be so clear due to the finite contribution from the holes at
the T point, even though it will be clear in �. For the
electron doped case [Fig. 2(c)], neither the band-edge
effect nor the sign change will be hardly seen. These
predictions will contribute to resolve the long standing
and puzzling experimental reports of RH on Bi.
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