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The experimental investigation of quantum phases in optical lattice systems provides major challenges.

Recently, dynamical generation of double occupancy via modulation of the hopping amplitude t has been

used to characterize the strongly correlated phase of fermionic atoms. Here, we want to validate this

experimental technique with a theoretical study of the driven Hubbard model using analytic methods. We

find that conclusive evidence for a Mott phase can be inferred from such a measurement, provided that

sufficiently low temperatures kBT � t can be reached.
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The recent progress in cooling and manipulating cold
fermionic gases in optical lattices allows us to investigate
phenomena at ever lower temperatures, where intriguing
many-body effects generate new (quantum) phases which
are of much interest in condensed matter systems as well.
While the high tunability of atoms in optical lattices is a
landmark advantage of these systems, the availability of
methods allowing for their proper characterization lags
behind the sophistication reached in solid state physics.
This lack in available experimental probes gains impor-
tance, now that an increasingly larger class of nontrivial
quantum phases are in reach. Their definitive identification
requires the translation of the defining properties, usually
expressed in terms of thermodynamic and transport coef-
ficients, to the probes available for cold atomic systems.
Recently two experiments addressed the question of
strongly correlated fermions in an optical lattice [1,2].
Schneider et al. [2] concentrate on the compressibility
[3], while Jördens et al. [1] have made use of a new probe,
the dynamically generated double occupancy (DGDO)
proposed by Kollath et al. [4], in order to identify a
Mott-insulator state of strongly repulsive fermionic 40K
atoms. This technique, where the signal is the change in
double occupancy after dynamical modulation of the hop-
ping amplitude t, represents a prime example of a mea-
surement without analog in classical solid state physics [5].
Using different analytic methods in separate regions of the
parameter space, cf. Fig. 1, this Letter aims at a theoretical
characterization of the DGDO scheme and its suitability to
describe the transition or crossover to the fermionic Mott
insulator.

Ultracold fermions in an optical lattice are well de-
scribed by the Hubbard model

H ¼ �t
X

hi;ji;�
ðcyi�cj� þ H:c:Þ þU

X
i

Di ¼ �tK þUHint;

(1)

where the spin degrees of freedom are realized by two

hyperfine states. Here, cyi� are fermionic operators creating
particles with spin� in aWannier state at site i,Di ¼ ni"ni#

measures the double occupancy at site i, and the sum hi; ji
runs over nearest neighbors for all N lattice sites. Although
the phase diagram for the three dimensional system is not
precisely known yet, the qualitative form was determined
(cf. [6,7] and references therein). In particular, at half
filling on a cubic lattice, an antiferromagnetic phase below
T & TN�eel � 0:3TF is expected; whereas in strongly frus-
trated systems, typical estimates limit the temperature for
(paramagnetic) Mott physics to a regime below 0:1TF (TF

denotes the Fermi temperature).
The two defining properties of a fermionic Mott insula-

tor are the interaction-induced incompressibility and a van-
ishing Drude weight in the optical conductivity [6]. While
the first is related to a gap �� in the charge spectrum and
can be used as a probe in the cold atom setup as well, the
measurement of the second one, relying on transport prop-
erties, is more difficult to perform. From this viewpoint, the
implementation of the Hubbard Hamiltonian with cold
atoms not only allows us to study this unsolved model in
a controlled environment, but also poses inherently new
questions. In comparing theoretical and experimental re-
sults, it is of interest to know which features in the calcu-
lation (which is based on a uniform system) survive the
translation to the (inhomogeneous) experimental setup. We
thus characterize the DGDO technique in a wide parameter

FIG. 1 (color online). Regimes where the dynamically gener-
ated double-occupancy probe is analyzed: High temperatures
(I) are discussed in the atomic limit. The regime at zero tem-
perature and low densities (II) involves the solution of a two-
particle problem; the situation at half filling and T ¼ 0 (III) is
done within a slave-spin mean-field analysis.
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regime and conclude that frequency-integrated and bond-
averaged quantities capture the desired information with
the least obstructions due to confinement-induced changes
of line shapes.

Our theoretical analysis of the DGDO technique in-
volves exactly solvable limiting cases of the Hamiltonian
(1), namely, the atomic limit (t ¼ 0) and the two-particle
problem, see Fig. 1, with results relevant in the regimes U,
T � t, as well as for filling � � 1 (we set kB ¼ 1). On the
other hand, in order to discuss the Mott physics within the
DGDO technique at low temperatures, cf. Fig. 1 (III), we
introduce and apply a slave-spin mean-field approximation
which captures the most relevant physics on both the t and
U scale. Our results for the DGDO signal are summarized
in Fig. 2.

We first derive the expression for the second-order re-
sponse function describing the DGDO �D; exciting the
system during the time ��mod through a (isotropic) modu-
lation Hmod ¼ �t cosð!�ÞK of the hopping amplitude, the
task is to calculate the expectation value

�Dð�Þ ¼ hc ð�ÞjX
i

Dijc ð�Þi � h0jX
i

Dij0i; (2)

of the double-occupancy operator, where j0i denotes the
unperturbed ground state. We write the perturbed wave
function c ð�Þ in the interaction representation, jc ð�Þi ¼
expðiH�=@ÞT� exp½�ði=@ÞR�

�1 d�0Hmodð�0Þ�j0i, where T�

denotes time ordering. Expanding (2) to second order in
the hopping modulation �t and keeping only nonoscilla-
tory terms �Dð�Þ ¼ ��t2�Dð!Þ��mod=2@

2 þ osc:þ
Oð�t3Þ, we arrive at the spectral transition rate (the time-
averaged first-order response vanishes)

�Dð!Þ ¼ X
n

hnj�DjnijhnjKj0ij2�ð!�!n0Þ: (3)

Here, jni denote the excited states with energy @!n0 ¼
@!n � @!0. Note, that in the current experiment [1],
�Dð�Þ is not / ��mod, however [8]. We define the inte-
grated quantity

�Dtot ¼ 2

Nz

Z
d!�Dð!Þ; (4)

normalized to the number Nz=2 of bonds in the system
(z ¼ coordination number). In the noninteracting limit
(U ¼ 0), the eigenstates of (1) are those of K, and no
excitations are induced; hence, �Dtot vanishes, and a finite
interaction U is required to generate a finite result. In the
following, we evaluate (4) in the regimes (I)–(III).
In the atomic limit (t ¼ 0, region I), the calculation of

the change in the double occupancy reduces to a two-site
problem, and �Dtot is given by the square of the probabil-
ity to find a singly occupied lattice site; its rapid increase
signals the crossover from weak to strong correlations. In
the limit U � T, �Dtot saturates at �

2 for � � 1 and at
ð2� �Þ2 for � � 1 [cf. Fig. 2(a)]. The atomic limit, valid
in the regime U, T � t, offers a good starting point for
analyzing current experiments [1,3].
In the low-density limit (� < 1, region II), we analyze

the DGDO by exactly solving the two-particle problem
with Hubbard interaction [9,10]. One then expects a sig-
nature at finite frequency of order U, as two fermions (in a
singlet state) on the same site cost an energy U, irrespec-
tive of the density. We only consider the d ¼
1-dimensional case here, the extension to higher dimen-
sions is straightforward. The two-particle wave function in
the singlet channel, c scatðrÞ ¼ hrjk1; k2iscat, with r the rela-
tive coordinate and k1 and k2 the momenta of the two
atoms, can be obtained by solving the Lippmann-
Schwinger equation (we ignore the center of mass motion).
Expanding the solution c scatðrÞ in Bloch waves
c BlochðrÞ ¼ hrjk1; k2iBloch, we find the amplitudes

Blochhq; k0jq; kiscat ¼ �k;k0 þ ðU=NÞfðq; kÞ
�q;k � �q;k0 þ i�

; (5)

with �k;q ¼ 4t cosðqÞ cosðk=2Þ the bare dispersion and

fðq; kÞ ¼ ½1þU=4tij sinðk=2Þ cosðqÞj��1 the scattering
amplitude. Here, q ¼ ðk1 þ k2Þ=2 and k ¼ k1 � k2 are
the total and relative momenta of the two atoms. In addi-
tion, a bound state c bsðrÞ with amplitudes

Blochhq; k0jqibs ¼ ð2U3=�bsq Þ1=2=ð�q;k0 � �bsq Þ (6)

and energy �bsq ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ ½4t cosðqÞ�2p

is found. Rewriting

K ¼ ðHint �HÞ=t with Hint ¼ U�r;0, we find for the total

FIG. 2 (color online). Characteristic DGDO signal for the
different regimes (I)–(III) of Fig. 1. (a) For the high temperature
region (I), we find an increase in �Dtot for increasing U=T and a
saturation value �Dtot ! �2 at U � T. (b) For the low-density
phase at T ¼ 0, we find the same behavior with a saturating
response at u ¼ U=Uc � 1 where �Dtot ! �2½1�
sinð4��Þ=4���. The response of the system at half filling and
T ¼ 0 (III) changes its behavior significantly at u ¼ 1.
(c) Spectral DGDO signal �Dð!Þ with peaks at @! ¼ � and
around @! � maxðUc;UÞ identifying transitions between the
Gutzwiller and upper Hubbard, and those between the lower

and higher Hubbard bands, respectively. (d) Total weights �Dh;i
tot

accumulated in the two peaks in (c). Shown in grey is the
fluctuation region ju� 1j< ufl where our mean-field analysis
is not valid.
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DGDO (4) per singlet pair fk1; k2g,
�Dk1;k2

tot ¼ ½c 2
bsð0Þ � c 2

scatð0Þ�ðU=tÞ2c 2
bsð0Þc 2

scatð0Þ; (7)

the above result originates from a process where two
particles in the scattering state jq; kiscat combine to a
repulsively bound pair jqibs. To obtain the full result at

small but finite density �, we have to calculate �Dtot ¼P
k1;k2

nk1;k2�D
k1;k2
tot , where nk1;k2 is the ground state expec-

tation value to find a pair fk1; k2g in the singlet channel, see
Ref. [9]. The final result, cf. Fig. 2(b), shows again an
increasing signal for small U=t and a saturation at large
U=t, with �Dtot ! �2½1� sinð4��Þ=4���. While the
derivation assumes low density, the result up to � ¼ 1 is
shown for comparison with the other approaches [9].

We now turn to the low-temperature regime of the half-
filled Hubbard model (1) in three dimensions, the region III
in Fig. 1. Depending on the amount of Fermi-surface
nesting, an antiferromagnetic phase intervenes with the
Mott physics. For the optical lattice implementation, this
would require an initial cooling to about Ti � 0:02TF [7].
Within the slave-spin mean-field treatment used here, the
possibility for the appearance of such a magnetic order is
ignored. All our results below can be obtained within the
four-boson approach of Kotliar and Ruckenstein [11]
which builds on earlier slave-boson methods [12,13].
However, we apply a minimal formalism reminiscent of
the slave-spin [14] or the slave-rotor formulation [15]
which captures all aspects relevant to our present
discussion.

On each lattice site, we introduce an auxiliary pseudo-
spin-1=2 S with eigenstates (of Sz) jþi (j�i) encoding
double and empty (singly) occupied sites with excitation
energies of order U. In addition, auxiliary fermionic op-
erators f� are introduced to describe the low-energy qua-
siparticle degrees of freedom. The physical creation
(annihilation) operators of the original model then are

represented as cðyÞ� ¼ 2SxfðyÞ� . The physical states in the

enlarged Hilbert space are jei ¼ jþ; 0i, jdi ¼ fy" f
y
# jþ; 0i,

j"i ¼ fy" j�; 0i, and j#i ¼ fy# j�; 0i, where j0i is the vac-

uum of the f-fermions. The projection onto the physical
subspace is achieved by imposing for each site i the con-

straint Szi þ 1=2 ¼ ðP�f
y
i�fi� � 1Þ2; as a result, Hint in-

volves solely pseudospin operators Szi .
Within our mean-field solution, we assume product

states in pseudospin and fermion degrees of freedom,
thereby relaxing the above constraint. Within this approxi-
mation, the canonical anticommutation relations are pre-

served on average, hfci�; cyj�0 gi ¼ 4hSxi Sxjihffi�; fyj�0 gi ¼
���0�ij, where h. . .i denotes the average over mean-field

eigenstates. As a consequence, the single-particle spectral
weight is preserved as long as the spin identity ðSxi Þ2 � 1=4
is respected.

We obtain two effective mean-field Hamiltonians: The
fermion problem assumes the form of a noninteracting
tight-binding Hamiltonian with a hopping amplitude re-

normalized by a factor gij ¼ 4hSxi Sxji, with i, j nearest

neighbors. On the other hand, the pseudospin problem
reduces to the transverse Ising model

HTIM ¼ �X
hi;ji

JijS
x
i S

x
j þ h

X
i

Szi ; (8)

with the transverse field h ¼ U=2 and the exchange cou-

pling Jij ¼ 4t
P

�ðhfyi�fj�i þ c:c:Þ. The transverse Ising

model is a prime example of a system displaying a quan-
tum critical point at a critical ratio ð2h=JÞc ¼ ðU=JÞc,
separating a magnetically ordered phase from a quantum
paramagnet. In the following, we restrict our analysis to
translation-invariant states, for which Jij ¼ J ¼
�ð16=zÞR0

�2td d""��ð"Þ � 2:67t, and ��ð"Þ is the non-

interacting density of states per spin.
Applying a single-site molecular-field approximation to

Eq. (8), the critical ratio is given by ðU=JÞc ¼ z, and we
recover the result of the Gutzwiller approximation [16] of
the Hubbard model. Within the molecular-field approxi-
mation, the magnetization of the pseudospin points along
the z-component of the quantization axis rotated around
the y-axis due to the action of the magnetic field h (or

interaction U). The angle of rotation is given by tanð’Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
=u for u � 1 and tanð’Þ ¼ 0 for u > 1, where

u ¼ U=Uc. The fluctuations around this magnetization
are calculated within a spin-wave analysis [17,18] and
we find the gapped pseudospin-wave spectrum

@!ðkÞ ¼ Uc

2
	

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	ku

2
p

; for u � 1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 	ku

p
; for u > 1;

(9)

with 	k ¼ �ð1=dÞPd
i¼1 cosðkiÞ and an excitation gap� ¼

@!ð0Þ.
The quantum criticality at u ¼ 1 is reflected in the soft-

ening of the mode (9). For u > 1, the jump �� in the
chemical potential from hole to particle doping amounts to

FIG. 3. The single-particle spectral density (per spin �) A�ð!Þ
calculated within the slave-spin theory for different interaction
strengths u. In the metallic phase, panels (a) and (b), the DGDO
probe can induce transitions to the upper Hubbard band from
either the coherent Gutzwiller band at @! ¼ 0 or the lower
Hubbard band, see (b). In the insulating state, only the latter
possibility remains, see (d).
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twice the excitation gap, �� ¼ 2�; the above pseudospin
mode corresponds to the gapped charge excitation of the
Mott insulator [19,20].

To estimate the validity of the molecular-field plus
spin-wave calculation, we compare fluctuations with the
magnitude of the order parameter and define ufl through
the condition 1=ðzþ 1Þ½Ph0;iih�Sx0�Sxi i þ hð�Sx0Þ2i� ¼
hSx0i2jufl . For the cubic lattice, we obtain ufl � 0:9; hence,
for u � 1
 0:1, the fluctuation induced corrections to the
molecular-field result are important, and the validity of the
above analysis is limited.

Below, we will see that the DGDO can be qualita-
tively understood by the structure of the single-particle
spectral density, which is defined as A�ð!Þ ¼
�P

kImGR
�ðk; !Þ=N�. Here, GR

�ðk; !Þ is the retarded
single-particle Green’s function of the c-fermions which
is calculated in a straightforward way using the Lehmann
representation. The result is shown in Fig. 3 in the metallic
as well as in the insulating phase. The gapped mode found
in the transverse Ising model leads to the incoherentweight
around 
maxðUc;UÞ=2 in the spectral density. In the
metallic phase, we find the characteristic three peak struc-
ture with preformed Hubbard bands centered at @! �

Uc=2 and a coherent Gutzwiller band at @! � 0. The
Gutzwiller band disappears at u ¼ 1, and the Hubbard
bands touch at @! ¼ 0. For u � 1, the Hubbard bands
assume a constant width of Uc=2 and are separated by U.
The approximate nature of our treatment of the spin prob-
lem violates ðSxi Þ2 � 1=4, and the spectral weight fails to
be properly normalized. This failure only manifests itself
in the fluctuation regime, however.

The nonlinear DGDO signal is calculated from Eq. (3)
by expressing Hint and K in terms of the slave-spin opera-
tors; a careful analysis of the consistency in the order of
expansion is crucial. For u � 1, we find two distinct fea-
tures in �Dð!Þ, cf. Fig. 2: The sharp peak at @! ¼ � with
weight �D<

tot is due to the excitation of a pseudospin-wave
mode atk ¼ 0. In the fermionic language, this corresponds
to the process where the system is excited from the
Gutzwiller band to the upper Hubbard band, cf. Fig. 3(b).
The peak measures the quasiparticle weight Z, which is
absent in the insulating state; hence, its vanishing serves as
a clear signal for the metal-insulator transition. Without the
inclusion of quasiparticle interactions, the peak is infinitely
sharp. The broad peak around @! � maxðUc;UÞ with
weight �D>

tot originates from a continuum of pairs of
pseudospin waves and corresponds to the excitation across
the gap between the (preformed) upper and lower Hubbard
bands, cf. Fig. 3(d); this feature survives the phase tran-
sition, and �D>

tot saturates at u � 1. The double-peak
structure in Fig. 2 is an artifact of our mean-field approach.
To obtain the exact line shape, a more complicated calcu-
lation is required.

In conclusion, we have calculated the DGDO in various
regimes and have investigated the suitability of this probe
to characterize the Mott transition in a fermionic system.

To make the closest contact to experiment, we find that it is
convenient to study the integrated weight �Dtot.
For a characterization of the localized phase, our find-

ings show that the weight �D>
tot from frequencies @! � U

is not an optimal measure for Mott physics: All regimes,
low density, high temperatures (single-site problem), as
well as the half-filled case display qualitatively similar
results. Only a quantitative analysis allows us to distin-
guish different regimes: the DGDO signal �D>

tot in the
interaction dominated regime saturates at a density depen-
dent value which is largest at half filling. It turns out,
however, that one can uniquely identify the Mott transition
in a strongly frustrated system by making the distinction
between �D<

tot and �D>
tot. These two weights characterize

the transitions between the Gutzwiller and upper Hubbard
and those between the lower and higher Hubbard bands,
respectively. The quantity �D<

tot traces the quasiparticle
weight Z and captures the presence of the coherent
Gutzwiller band in the metal; its vanishing then serves as
a clear signal to identify the Mott transition. The main
effect of a trapping potential on the disappearance of this
coherent signal is expected to come from a residual signal
from the low-density regime in the periphery of the trap
and its influence on the close-by insulator.
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