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The sawtooth control mechanism in plasmas employing off-axis toroidally propagating ion cyclotron

resonance waves in tokamaks is reinvestigated. The radial drift excursion of energetic passing ions

distributed asymmetrically in the velocity parallel to the magnetic field determines stability when the

rational q ¼ 1 surface resides within a narrow region centered about the shifted fundamental cyclotron

resonance.
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Magnetohydrodynamic (MHD) stability of plasmas in
the presence of energetic ions is a crucial issue for present
and future large tokamak experiments. Such ions include
3.5 MeV fusion alpha particles, and energetic minority ions
produced by auxiliary heating methods such as from ion
cyclotron resonance frequency (ICRF) waves. Ions trapped
outside the region of highest magnetic field strength have
been shown [1] to stabilize a key core instability known as
the sawtooth, located within the q ¼ 1 rational surface,
thereby lengthening the period between sequential soft-x-
ray relaxations [2]. Without an effective means of short-
ening the period of sawteeth, coupling can occur with
instabilities located at rational surfaces closer to the toka-
mak edge. Indeed, interaction of long sawteeth and per-
formance degrading neoclassical tearing modes has been
observed [3] in the Joint European Torus (JET), while
improved plasma confinement is often found to coincide
with small regular sawteeth.

Under certain conditions untrapped, or passing, ener-
getic ions can also strongly influence sawteeth. Sawtooth
control from energetic ions injected with near tangential
unbalanced neutral beams has already been demonstrated
analytically, for deeply passing ions [4], numerically and
experimentally [5]. The mechanism responsible was found
to be due to the contribution on the n ¼ 1 internal kink
mode of passing particles intersecting the q ¼ 1 rational
surface. An important fast ion effect is obtained when the
distribution function of passing ions is asymmetrically
distributed in the velocity parallel to the magnetic field.
By extending the analysis of Ref. [4] to solve for the
internal kink mode across all velocity space, including
barely passing trajectories, it is shown in the present con-
tribution that the sawtooth control mechanism responsible
for localized off-axis toroidally propagating ICRF waves is
essentially the same as for unbalanced neutral beam injec-
tion (NBI) scenarios. Moreover, the propagating ICRF

waves are more effective than unbalanced NBI because
the orbit widths of the energetic ions are larger, and the
parallel asymmetry of the distribution function is more
strongly radially sheared. Simulations using SELFO [6] for
the ICRF wave field and distribution function are applied
to a key demonstration JET discharge [7] with localized
off-axis ion cyclotron current drive (ICCD) counter to the
Ohmic current. Analytical and full numerical calculations
[8] of the internal kink mode with the simulated JET ICRF
distribution function [9] demonstrate ideal instability when
the deposition of the resonating ions is very close to the
q ¼ 1 radius r1. Such is the sensitivity to the location of
deposition, and the magnitude of the effect, that this fast
ion mechanism, i.e., non-MHD mechanism, dominates
over the previously assumed classical mechanism (e.g.,
Refs. [9–11]) relating to the change in the magnetic shear
due to the fast ions [12], and the resulting effect on MHD
stability.
In the absence of an electrostatic potential, the equilib-

rium distribution of fast particles F depends on the kinetic
energy E ¼ v2=2, the magnetic moment � ¼ v2

?=B, the
toroidal canonical momentum P� ¼ Rv� þ Zec p=mh,

and � ¼ �1, which depends on the sign of vk. Here, c p

is related to the minor radius r by rB0dr � qðrÞdc p. Let

us expand F in orders of the orbit width �r, so that F ¼
F0 þ F1 þ . . . . A useful alternative toP� is the equivalent

constant of motion �r ¼ ��1
b

R�b
0 dtrðtÞ, where �b is the

bounce time, or transit time, for, respectively, trapped or
passing particles. Writing rðtÞ ¼ �rþ �rðtÞ we have

F0 ¼ FðE; �; �rÞj�r!r

and F1ðE; �; rÞ ¼ ��rG0ðE; �; rÞ (1)

with

G0ðE; �; rÞ ¼ GðE; �; �rÞj�r!r and G ¼ @F

@�r
: (2)
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The finite orbit expansion allows separation of two types
of toroidal current (j� � eZ

R
dv3v�F) drive effects.

Now, defining F� ¼ Fð�Þ, and using v� � vk andR
dv3 ¼ P

��
R1
0 dEð2EÞR1=B

0 d� B
jvkj , yields the expan-

sion of the current j� ¼ j�0
þ j�1, where

j�0
¼ Ze�

Z 1

0
dEð2EÞ

Z 1=B

0
d�BpðFþ

0 � F�
0 Þ;

j�1
¼ �Ze�

Z 1

0
dEð2EÞ

Z 1=B

0
d�B�rðGþ

0 þG�
0 Þ;

with �r ¼ qðjvkjR� pR2
0q!bÞ=ðr�cÞ, where p ¼ 1 for

passing particles, p ¼ 0 for trapped particles, !b ¼
2�=�b, and�c ¼ eZB0=m. We note that the current driven
entirely by passing ions j�0

can encompass both Fisch

currents [12], and the currents associated with detrapping
into preferentially co- or counter-passing ions [9,13]. Both
require an asymmetric distribution in vk at the lowest

order, i.e., in F0. The finite orbit corrected current j�1
is

dominated by trapped ions, and is associated with the
constraint of canonical momentum conservation and radial
gradients in the distribution function.

We now examine the internal kink stability in the
presence of general asymmetrically distributed ions. The
relevant ordering employed is ��Oð�2Þ, where � ¼
2�0Ph;c=B

2
0 is the ratio of hot, or core, particle pressure

and the magnetic pressure, and � ¼ r=R0 is the inverse
aspect ratio. The fast ion perturbed distribution function
	F ¼ 	Ff þ 	Fk, where [4]

	Ff ¼ �ðZe=mÞð� � rc pÞ @F

@P�

(3)

is the adiabatic (fluid) contribution, � ¼ �̂ expð�in��
i!tÞ is the MHD displacement with �̂ ¼P

m�̂m expð�im
Þ, and the nonadiabatic (kinetic) contri-
bution 	Fk can be approximately written as ‘‘bounce
time’’ �b periodic function of time [4,14]:

	Fk ¼
X1

l¼�1
	FðlÞ

k exp½�ið!þ l!b þ nh _�iÞt�; (4)

	FðlÞ
k ¼ � !� n!�

!þ nh _�i þ l!b

@F

@E

	
��

v2
k þ

v2
?
2

�
� � �? exp½ið!þ l!b þ nh _�iÞt�

�
;

(5)

where !� ¼ @F=@P�ð@F=@EÞ�1, � is the magnetic cur-

vature vector and hXi ¼ 1
�b

R�b
0 dtX.

In order to relate Eqs. (3) and (4) to a potential energy
	W, we note that 	W ¼ �ð1=2ÞR d3x��

? � �F , where

�F ¼ �j	Bþ j	 �B� r � 	P. The fast ion distribu-
tion function primarily influences the perturbed pressure
tensor 	P. The modification of the fast ions to the current
in �F is negligible [14] for the ideal MHD leading order

displacement �̂r ¼ �0H½r1 � r� expð�i
Þ, where H is the

Heaviside step function. The hot ion contribution is then
	W ¼ ðm=2ÞR d3x

R
d3v� � ��

?ðv2
k þ v2

?=2Þ	F.
We retain only the most important kinetic contributions

to sawtooth relevant modes, for which it is appropriate to
employ ! ¼ 0. The most important contribution to
Eqs. (4) and (5) is absent of bounce harmonics, i.e., l ¼
0. The l ¼ 1 response [4,15] is small for ! ¼ 0. Recalling
Eq. (2) for the definition G0, we have for the passing ions
the leading order (in �r) kinetic response:

^	Wkp ¼ � 23=2

�1=2�21R0

Z r1

0
dr

Z 1

0
dy2

�
2

�

�
G3 þG4

2

��
2

	
�
q

�c

��
eT?
m

�
1=2

�
2�0

B2
0

�
ðCþ � C�Þ (6)

while for trapped ions one obtains the well known trapped

ion kinetic response ^	Wkt, defined, e.g., in Eq. (11) of
Ref. [16]. In the above

C� ¼
�
eT?
m

��1=2 ðm=2Þð�=2Þ3=2
½y2 þ �ð2� y2Þ�3

Z 1

0
dEð2EÞ2G�

0 ;

and ^	W ¼ 	W=ð2�2R0�
2�21B

2
0=�0Þ, together with

G3 ¼ �

2

Z �

��
d
Jð
Þð1� � cos
Þ½1� y2sin2ð
=2Þ�1=2;

G4 ¼ y2

4

Z �

��
d
Jð
Þ ð1� � cos
Þ2

½1� y2sin2ð
=2Þ�1=2

where Jð
Þ ¼ cosð
q� �K½
=2; y2�=K½y2�Þ, K½�; y2�,
and K½y2� are, respectively, incomplete and complete el-
liptic integrals of the first kind, and the pitch angle y2 ¼
2�B0=½1� �B0ð1� �Þ�, with � ¼ �=E.
In order to identify finite orbit effects, we expand Eq. (3)

about the flux label r. For this purpose we note that
� � rc ¼ rB0�r=qðrÞ and @=@P� ¼ ��1

c ðqð �rÞ=�rÞ@=@�r,
r=�r ¼ 1þ �r=r, qð�rÞ=qðrÞ ¼ 1� �rsðrÞ=r. Thus

	Ff ¼ ��r

�
G0 þ �r

r

�
ð2� sÞG0

� y2

2
ð2� y2Þ @G0

@y2

��������r
�@ðrG0Þ

@r

��������y2

��
(7)

where @G=@rj�¼@G=@rjy2 þð2�y2Þy2ð2rÞ�1@G=@y2jr.
The 	W contribution corresponding to the first term in

Eq. (7) yields the usual adiabatic response in the absence of

finite orbit effects ^	Wf0 (see, e.g., Eqs. (19) and (20) of

Ref. [16]) and is generally the same order of magnitude as
^	Wkt. The terms in Eq. (7) proportional to�r are written in

a convenient form upon integration by parts: ^	Wfp1 ¼
^	Wr1 þ ^	Wy2¼1 þ ^	Wfp1ðextraÞ, where

PRL 102, 065005 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 FEBRUARY 2009

065005-2



^	Wfp1ðextraÞ ¼ 23=2

�1=2�21R0

Z r1

0
dr

Z 1

0
dy2

�
q

�c

��
eT?
m

�
1=2

	
�
�y2 �

�
y2

2
þ �

@

@�
þ y2

2
ð2� y2Þ @

@y2

�

	
�
2G1 þG2

K½y2�
���

2�0

B2
0

�
ðCþ �C�Þ; (8)

G1 ¼ �

2

Z �

��
d
 cos
ð1� � cos
Þ½1� y2sin2ð
=2Þ�1=2;

G2 ¼ y2

4

Z �

��
d
 cos
ð1� � cos
Þ2½1� y2sin2ð
=2Þ��1=2:

Now, ^	Wfp1ðextraÞ is almost cancelled by the kinetic

contribution for passing ions given by Eq. (6). Note that

we have exactly ^	Wfp1ðextraÞ þ ^	Wkp ¼ 0 when all the

ions are deeply passing [4], for which y ¼ 0. The term
^	Wy2¼1 is evaluated on the passing side of the passing-

trapped boundary (y2 ¼ 1), and hence ^	Wy2¼1 ¼ 0 if F0 is

symmetric in vk for the trapped ions, and continuous across
the passing-trapped boundary. The only significant finite

orbit correction term remaining is ^	Wr1 evaluated at r1:

^	Wr1 ¼ �
�
2

�

�
1=2 2

�1

Z 1

0
dy2

�
�1y

2

2
� 2G1 þG2

K½y2�
��

q

�c

�

	
�
eT?
m

�
1=2

�
2�0

B2
0

�
ðCþ � C�Þ

��������r¼r1

(9)

and represents the effect of having nonzero parallel energy
flux [17] gradient

R
dv3G0ðv2

?=2þ v2
kÞvk at r1.

The model ICRF distribution function

F ¼
�

m

2�eT?ð �rÞ
�
3=2

Að �rÞ1=2ncð�rÞ½1þ �cð �r; �Þ�

	 exp

�
� mE
eT?ð�rÞ ð�Bc þ Að �rÞj1� �BcjÞ

�
(10)

involves the resonant magnetic field Bc � B0ð1� �cÞ [18],
anisotropy (A ¼ T?=Tk, with temperatures in units of elec-

tron volts), and an asymmetry coefficient cð�r; �Þ affecting
only the odd moments of the distribution function. Thus

Cþ � C� ¼ eT?ðrÞ
Dðr; y2Þ3

�
@

@r
ðncA1=2cÞ þ ncA

1=2 y
2

2r
ð2� y2Þ

	 @c

@y2
� 3

dA

dr

�
ncA

1=2cj2�� y2ð�� �cÞj
Dðr; y2Þ

�	

(11)

where Dðr; y2Þ ¼ y2ð1� �cÞ þ Aj2�� y2ð�� �cÞj.
Moreover, the lowest order flux averaged current is

hj�0ðrÞi ¼ Zenc

�
2eT?A
�m

�
1=2 Z 1

0
dy2

2�cðr; y2Þ
Dðr; y2Þ2 : (12)

It is found that the contribution of standard passing ions to
the finite orbit width corrected current hj�1ðrÞi is negligible

compared to hj�0ðrÞi. Hence, hj�0ðrÞi and hj�1ðrÞi can be

identified with, respectively, the passing and trapped ion
currents, before the bulk plasma drag [10] has been sub-
tracted. The asymmetry function cðr; y2Þ can be resolved if
the passing ion current contribution is known. We let c ¼
crðrÞcyðy2Þ, and choose cy to be log-normal in 1� y2 for

0 
 y 
 1, and cy ¼ 0 for y � 1, so that the asymmetry in

F0 vanishes smoothly at, and beyond, the boundary of
passing orbits as required.
We now apply these results to JET discharge 58934, a

demonstration discharge described in detail in Ref. [9].
The passing ion current after plasma drag has been sub-
tracted, i.e., the net passing ion current, from the SELFO

simulation is shown in Fig. 19(a) of Ref. [9]. Using
Eq. (12) and cðr; y2Þ described above, we are now able to
approximate the passing ion current. The gross passing ion
current, i.e., before subtraction of plasma drag, is shown in
Fig. 1(a). Additional knowledge of the flux averaged fast
ion density and pressure profiles and the anisotropy enables
full reconstruction of the model distribution function of the
on-axis and off-axis ICRF population of JET discharge
58934. Figure 1(b) illustrates the sensitivity of the 	W
contributions with respect to r1=a for an unchanged fast
ion distribution function. The dot-dash curve shows the

conventional fast ion contribution ^	W0 ¼ ^	Wf0 þ ^	Wkt,

i.e., the contribution without finite orbit effects. Except for
the q profile, all plasma and fast ion related profiles re-

main fixed. It is seen that as r1 increases, ^	W0 increases,
and this result is consistent with the dependence of

�Rr1
0 drr3=2P0

h=r
2
1 on r1. The solid line in Fig. 1(b) plots
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FIG. 1. (a) Using Eqs. (10) and (12) as a fit of the flux averaged
passing ion current profile of JET discharge 58934 [10], without
bulk plasma drag current. (b) ^	W0 and ^	Wr1 according to
Eq. (9), and also ^	Wr1 according to the fit of Eq. (13), plotted
as a function of r1=a. (c) The fast ion growth rate as a function of
r1=a, compared with HAGIS simulations.
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the finite orbit correction ^	Wr1 , given by Eq. (9), as a

function of r1. It is seen that there is a deep and narrow

minimum in ^	Wr1 close to r1=a ¼ 0:41, which is close to

the measured inversion radius of rinv=a ¼ 0:34.
Some simple algebra and numerical integration over

pitch angle y2 reveals the physics behind the extreme

sensitivity of ^	Wr1 to the location of r1, since

^	W r1 � � 2

��1

1

Z�c

�
2�0

B2
0

�
T1=2
? T1=2

k
dhj�0i
dr

��������r1

: (13)

The dashed line of Fig. 1(b) plots Eq. (13), for the current
profile of Fig. 1(a), and it is seen that there is excellent
agreement with Eq. (9). It is therefore clear that maximum
instability occurs when the largest radial gradient of the
passing ion current dipole is at r1. The zero in the current
dipole, and the shifted resonance position, would then
typcially coincide with r1. Note that for copropagating
waves on the high field side of the device, the current
dipole profile reverses sign, and consequently, the corre-
sponding plot of 	Wr1 with respect to r1 would have the

opposite sign to that shown in Fig. 1(b). Hence, for co-
propagating waves, the shifted resonance location coincid-
ing with r1 would be the most stable situation for the
internal kink mode. Moreover, the mechanism can also
explain sawtoothing experiments where co- or counter-
ICCD is deposited close to q ¼ 1 on the low field side.

Finally, we compare the above semianalytical results
with fully numerical results obtained by feeding the unad-
ulterated SELFO generated fast ion distribution function
into the drift kinetic code HAGIS [8], together with an
MHD displacement supplied from linear ideal MHD nu-
merical calculations, and evaluating the corresponding fast
ion contribution to the potential energy without approxi-

mation. The fast ion growth rates �=!A ¼ ð�=s1Þ ^	W,
with !A the Alfvén frequency, calculated using HAGIS are
compared with the net contribution from the semianalyti-

cal work contained in this section, i.e., the sum of ^	W0

together with Eqs. (6), (8), and (9), and are plotted in
Fig. 1(c). The narrow peak in the growth rate is clearly
recovered in the HAGIS simulations, and it has furthermore
been confirmed that it is primarily the passing ions that are
responsible for the signature shown. HAGIS also accounts
for the finite orbit width of trapped ions, and nonstandard
orbits. Away from the location of shifted resonance, this
neglect probably accounts for the overly enhanced stability
in the analytical calculations. Also shown is the instability
threshold �
̂ ¼ 
=r1 for the resistive-two-fluid internal
kink mode [19], with 
 the ion Larmor radius.
Neveretheless, due to the dominant effect of the ICRF
ions, contributions from the core plasma, or NBI distribu-
tions, are unlikely to prevent ideal instability.

In conclusion, a newly discovered mechanism has been
proposed that can explain the highly effective nature of
sawtooth control using off-axis toroidally propagating ion
cyclotron resonance waves. Energetic passing ions influ-
ence the internal kink mode when the distribution of ions is

asymmetric in vk, a natural feature of toroidally propagat-

ing ICRF waves. It is shown that when a counter-
propagating wave is deposited sufficiently accurately on
the high field side, the fast ion effect is so strong that the
internal kink mode is driven ideally unstable, and this in
turn is consistent with the observed sawteeth [7,9] that are
much shorter in period than those obtained in Ohmic
plasmas. This should be contrasted with the classical [10]
sawtooth control mechanism relating to the change in the
magnetic shear, due to ICCD, which leads to a moderate
effect on the threshold of an instability to resistive MHD
(e.g., [19]), but with no realistic recourse to ideal instabil-
ity. Furthermore, unlike the classical sawtooth control
mechanism, the fast ion mechanism is independent of the
electron drag, which is expected [20] to limit the current
drive efficiency of the proposed ICRF system for ITER
[21].
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