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Hamiltonian mixed systems with unbounded phase space are typically characterized by two asymptotic

algebraic laws: decay of recurrence time statistics (�) and superdiffusion (�). We conjecture the universal

exponents � ¼ � ¼ 3=2 for trapping of trajectories to regular islands based on our analytical results for a

wide class of area-preserving maps. For Hamiltonian mixed systems with a bounded phase space the

interval 3=2 � �b � 3 is obtained, given that trapping takes place. A number of simulations and

experiments by other authors give additional support to our claims.
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Understanding the phenomenon of recurrence, intro-
duced by Poincaré at the end of the 19th century [1], has
been a matter of intense investigation over the past two
decades in the theory of nonlinear dynamics. Let us con-
sider the recurrence time probability Pð�Þ defined as the
probability of a trajectory to return at a time t > � to a
predefined region. In the case of chaotic Hamiltonian
systems the phenomenology of recurrence is usually di-
vided into two groups. For fully chaotic systems its long-
time decay is exponential: Pð�Þ � e�h�. This result can be
understood recalling that (i) the frequency of periodic
orbits with period �0 < � is given by the same relation,
where h is the Kolmogorov-Sinai entropy [2], and
(ii) Bowen’s theorem [3] guarantees the asymptotic equiva-
lence of averaging over the phase space and over periodic
orbits. The recurrence statistics of such systems is well
understood in the literature [4]. Nonetheless, most physi-
cally realistic systems are mixed, with the phase space
consisting of chaotic and regular components. For these
systems, sticking to regular regions takes place, and the
probability Pð�Þ is believed to decay algebraically:

Pð�Þ � ���: (1)

The algebraic decay (1) was first observed by Channon
and Lebowitz [5] in the study of stochastic motion between
two KAM surfaces [6] in the Hénon quadratic map. It is
known that statistics of recurrence (1), clearly different
from the fully chaotic one, is associated to anomalous
transport [7], e.g., in a diffusive process where the mean
square displacement increases with a power of � not equal
to 1:

hð��xÞ2i � ��; (2)

for an unbounded dynamical variable xð�Þ. This fact has
motivated the use of suitable statistical theories such as
continuous-time random walk (CTRW) [8] and fractional
kinetics [9] to describe such systems. An alternative ap-
proach has been argued that the power law decay (1) is due
to the hierarchical structure of phase space, which can be
described by Markov tree models [10,11]. Despite signifi-

cant progress made with these theories, the understanding
of algebraic decay (1) from first principles, e.g., from the
microscopic equations of dynamics, is still very limited.
The purpose of this Letter is to understand the microscopic
mechanisms which determine the macroscopic algebraic
laws (1) and (2) through possible connections between
them.
For mixed systems the trapping of trajectories by the

stable islands gives rise to power law asymptotics not only
for Pð�Þ but also for the correlation function Cð�Þ. Karney
[12] showed, using simple arguments, that these two quan-
tities can be related through Cð�Þ / P1

t¼� PðtÞ. Therefore,
if Cð�Þ is asymptotically algebraic, then Cð�Þ � �Pð�Þ and
Pð�Þ satisfies Eq. (1), since � > 1 guarantees the finiteness
of mean recurrence times. Now, recalling the relation
between the diffusion coefficient Dð�Þ, defined by

Dð�Þ ¼ hð��xÞ2i
2�

� ���1; (3)

and the correlation function Cð�Þ, Dð�Þ �P
�
t¼1 CðtÞ [12].

If Eq. (3) is satisfied, then Cð�Þ is also asymptotically
algebraic and we have the following relation:

�þ � ¼ 3: (4)

In short, by means of very simple and general arguments
we show that, for sticking to regular regions in mixed
systems with unbounded phase space (UPS), Eq. (1) is
true if, and only if, Eq. (2) is also true, since � > 1 and
� satisfy the constitutive relation (4).
In order to find universal exponents for Hamiltonian

dynamics we will consider the following class of area-
preserving maps

xtþ1 ¼ xt þ Kfð�tÞ; �tþ1 ¼ �t þ xtþ1 mod2�; (5)

defined on the cylinder �� � � � �, �1< x<1,
where K is the stochasticity parameter. Now, let us con-
sider general UPS Hamiltonian mixed systems. Using the
relation (4), on the basis of our analytical results for the
system (5), and from numerical simulations and experi-
ments by other authors we will conjecture that for such
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systems

� ¼ � ¼ 3=2 (6)

for the trapping of chaotic trajectories in the vicinity of
islands of regular motion. We also confirm the Chirikov-
Shepelyansky universal relation [13],

� ¼ 3; � ¼ 0; (7)

for sticking of trajectories in the vicinity of golden invari-
ant tori, where � ¼ 0 corresponds to the null global diffu-
sion for � ! 1. Equation (7) was conjectured in Ref. [13]
on the basis of numerical investigations of the paradig-
matic Chirikov-Taylor standard map [6] at the critical
parameter valueK ¼ Kc � 0:971 635 406 31. At this value
the last invariant torus is critical, e.g., susceptible to arbi-
trarily small perturbations. There is some controversy
about the precise numerical observation of the � ¼ 3
decay, but it is believed that this exponent should appear
only for larger times [14]. If we reflect on this situation
through Eq. (4) we can understand the difficulty of achiev-
ing a conclusive numerical answer: the KAM barrier at
K ¼ Kc is the frontier of two distinct transport regimes,
namely, � ¼ 0 and � ¼ 1. For the first case we have
lim�!1Dð�Þ ¼ 0 for K <Kc, while the second exhibits
normal diffusion coefficient D � 0:1ðK � KcÞ3 for Kc <
K <Kc þ 0:1 [15]. To distinguish the two regimes on a
scale of 109 iterations for K � Kc � 10�11, as done by
Weiss et al. [14], it is necessary to detect hð��xÞ2i< 10�25.

To verify Eq. (6) we will first consider the standard map,
for which fð�Þ ¼ sin� and several studies of its transport
properties have been made [6]. This map exhibits, in the
vicinity of K ¼ 2l� for l � 0 integer, the following power
law for the diffusion coefficient:

Dð�Þ � ðjlj�Þ1=2; (8)

e.g., � ¼ 3=2, obtained analytically in a recent Letter [16].
Note that this power law is valid for all l � 0. We also
observe that this result can be generalized for the wide
class of maps (5). If there is trapping of trajectories due to
accelerator mode islands, which are created around a stable
Q-periodic orbit fðx�t ; ��t Þg1�t�Q, then

x�tþQ � x�t ¼ 2l�; K
XQ
t¼1

fð��t Þ ¼ 2l�; (9)

for all integer l � 0. The Q ¼ 1 modes lead to enhanced
diffusion, and the condition of stability for these is given by
j2þ Kf0ð��Þj< 2. Let us now assume that there are �c
such that f0ð�cÞ ¼ 0 and f00ð�cÞ � 0. These conditions are
required to ensure the existence of a relevant asymptotic
form for J 0ð�Þ ¼ ð2�Þ�1

R
�
�� d� exp½i�fð�Þ�:

J 0ð�Þ � ��1=2
X
c

ac expfi½�fð�cÞ þ ��c=4�g; (10)

where ac ¼ ð2�jf00ð�cÞjÞ�1=2 and �c ¼ sgn½f00ð�cÞ�.
Consider now �� ¼ �c þ �. We can always choose � small

enough such that �4=jKf00ð�cÞj< sgnðKÞ�c� < 0, in ac-
cordance with stability condition, and Kfð�cÞ ! 2l� as in
Eq. (9) forQ ¼ 1, since fð�cÞ � 0 [17]. Fortunately, by the
same arguments showed in Ref. [16], we also have

Dð�Þ / K
X�
j¼1

J 0ðjKÞ �
X�
j¼1

ffiffiffiffiffiffiffiffiffiffi
jlj=j

q
�ðjlj�Þ1=2; (11)

otherwise the sum in Eq. (11) gives terms of the typeP
�
	¼1 expðiq	Þ= ffiffiffiffi

	
p

whose sum converges by the Cauchy

integral test for � ! 1. The effective contribution of Q �
2 modes for enhanced diffusion is subject to several con-
straints. In addition to meeting Eq. (9), the stability con-
dition of such modes follows from the trace of the
monodromy matrix

YQ
t¼1

1 Kf0ð��t Þ
1 1þ Kf0ð��t Þ

� �
: (12)

All of these restrictions make the modes less significant as
Q increases. In short, the algebraic law (11) is closely
associated with the existence of critical points �c for which
the asymptotic form (10) exists. We point out a strong fact
supporting the universality of � ¼ 3=2 (and thus � ¼
3=2): this exponent does not depend on the general form
of fð�Þ nor the number of critical points, just the existence
of a single critical value �c is enough to justify it.
In order to reinforce the argument of universality for

Eq. (6), we can mention a number of simulations and ex-
periments that also point towards the universality of these
exponents. Karney [12] computed Pð�Þ for the quadratic
map, and Chirikov and Shepelyansky [18] did the same for
the whisker map. Their numerical results agree with � ¼
3=2. In a recent Letter, Cristadoro and Ketzmerick [11]
conjecture the universality of only Eq. (1). They used a
Markov tree model, originally developed by Hanson et al.
[10], with random scaling factors for the transition proba-
bilities. The long-time algebraic decay (1) was then ob-
tained. In order to check the universality of Eq. (1) they
studied numerically a specific area-preserving map of the
type (5) (for which �c exists) for several combinations of
parameters. The averaged exponent obtained was also very
close to 3=2, namely, � ¼ 1:57. There are also in the
literature a number of experiments for the study of � and
� from the perspective of the CTRW approach, for which
Eq. (4) is also valid. Zumofen and Klafter [8] studied the
Lévy-walk statistics of the standard map for two specific
values of stochasticity parameter: K ¼ 6:716 809 and K ¼
6:476 939, related toQ ¼ 3 andQ ¼ 5 accelerated modes,
respectively. The exponents obtained by them are � ¼ 1:8
and � ¼ 1:2 forQ ¼ 3, and � ¼ 1:6 and � ¼ 1:4 forQ ¼
5. Note that K ¼ 6:476 939 is closer to K ¼ 2�, for which
the power law diffusion is more precise [16]. This explains
the best fit of the Q ¼ 5 mode with the universality as-
sumption (6). Sanders and Larralde [19] studied the oc-
currence of anomalous diffusion in polygonal billiard
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channels. They found � ¼ 1:58 and � ¼ 1:81 for a par-
ticular billiard model. A similar experiment was also per-
formed by Schmiedeberg and Stark [20] for an extended
billiard model with honeycomb geometry, getting � ¼
1:72, and by Dettmann and Cohen [21] for a wind-tree
billiard model obtaining � ¼ 1:4. We should observe that,
usually, there is a coexistence between normal diffusive
� ¼ 1 and superdiffusive 1<�< 2 processes. Thus, the
algebraic laws (1) and (2) cannot be accounted for quanti-
tatively by a purely CTRW approach unless sufficiently
large times are reached. In this sense, Gluck et al. [22]
studied the process of chaotic diffusion for the continuous-
time periodic Hamiltonian H!ðp; q; tÞ ¼ p2=2 þ
cos2ðqÞcos2ð!tÞ, where �1< q<1. In order to include
the normal diffusive effects they used a convolution of
normal and Lévy propagators summed over all Lévy flight
times. For ! ¼ 0:8 they found � ¼ 1:55 and � ¼ 1:4, in
good agreement with Eq. (6). Finally, a numerical study of
a stationary flow with hexagonal symmetry [7] and two
experimental studies on chaotic transport in fluid flows
[23,24] also agree with � � � � 3=2 or at least with � �
3=2. All results described here are summarized in Table I.
As we can see, the mean values obtained for � and � are in
agreement with the universality of Eq. (6).

An interesting connection between Eq. (4) and the hier-
archical structure of phase space can be found in a work of
Zumofen et al. [25]. They study the motion of a particle in
layered medias through its random velocity field along the
x direction accompanied by normal diffusional motion in
the space y transverse to x: xð�Þ ¼ R

�
0 v½yðtÞ�dt. One of the

transverse spaces studied by them is a system with hier-
archically arranged connections between layers, very simi-
lar to Markov tree models used in Refs. [10,11]. Assuming
a power law decay for the correlation of velocities Cvð�Þ �
��
, they conclude that � ¼ 2�minð
; 1Þ. By Eq. (1) and
Cð�Þ � �Pð�Þ we have 
 ¼ �� 1, which confirms once
again �þ � ¼ 3, since 1< �, �< 2. They also studied
another model of walks whose transverse space is one

dimensional, finding � ¼ 3=2. However, the statistical
assumptions used in this model do not correspond to the
dynamics of the map (5) [26].
Thus far, our results include only UPS Hamiltonian

mixed systems, for which global diffusion takes place.
Nonetheless, an additional observation on Hamiltonian
mixed systems with bounded phase spaces (BPS) is in
order. Suppose that for times � � T0 the algebraic asymp-
totic regimes hold: Puð�Þ ¼ Cu�

��u and Pbð�Þ ¼ Cb�
��b ,

for unbounded (u) and bounded (b) systems, respectively.
On the one hand, according to Poincaré’s recurrence theo-
rem [1], the return of almost all trajectories in a finite time
is assured only for BPS systems. On the other hand, �u ¼
3=2> 1 guarantees the finiteness of mean recurrence
times. Therefore, we also have finite return times for al-
most all trajectories in UPS systems. Let us now focus our
attention on the trapping of trajectories by regular islands
for both systems. As it is typical in such scenarios, the
phase space is composed by islands of stability immersed
in a sea of chaotic trajectories with no KAM surfaces.
Occasionally, there may also be nonhierarchical borders
between regular and chaotic regions for some types of BPS
systems known to be sharply divided phase space [27].
Now, let us construct for each arbitrary BPS system with
phase space�b its UPS periodic extension defined through
translations xðtÞ ! xðtÞ þ ‘. Here, ‘ is a vector of the
Bravais lattice for which �b is the first Brillouin zone
and xðtÞ becomes unrestricted. Such extension makes
long recurrence times more likely. Thus, comparing the
process of recurrence in both cases we must have Puð�Þ �
Pbð�Þ, which implies, through universality of Eq. (6), that

�b > �u ¼ 3=2 for all � � max½T0; ðCb=CuÞ1=�b�3=2�, or
�b ¼ �u ¼ 3=2 if Cb � Cu. For sticking of trajectories in
the vicinity of golden invariant tori, a similar comparison is
valid. In both cases the trajectories are equally bounded by
KAM surfaces, so that we have �b ¼ �u ¼ 3 by Eq. (7).
Thus, the maximal trapping for UPS systems should cor-
respond to an upper limit for the maximal trapping in BPS
systems. Finally, we have the inequality

3=2 � �b � 3: (13)

The result (13) has been confirmed by numerous computer
experiments [27,28]. Special attention should be paid to
Hamiltonian systems with sharply divided phase space,
where KAM tori coexist with ergodic components of posi-
tive measure. Altmann et al. [27] studied numerically these
systems (mushroom billiards and piecewise-linear maps),
and their results suggest the universality of the exponent
�b ¼ 2 in the phase space ergodic components since hier-
archical borders are not present.
In conclusion, we show that the distribution of recur-

rence times and the power law diffusion for UPS
Hamiltonian mixed systems are two macroscopic algebraic
laws intimately connected through their asymptotic expo-
nents: �þ � ¼ 3. This relation confirms the Chirikov and

TABLE I. Algebraic exponents for some UPS Hamiltonian
systems.

Simulations—Experiments � �

Quadratic map [6,12] 1.44 � � �
Whisker map [6,18] 1.44 � � �
Standard map for K ¼ 6:476 939 [8] 1.6 1.4

Parametric map model [11] 1.57 � � �
Continuous-time Hamiltonian model [22] 1.55 1.4

Flow with hexagonal symmetry [7] � � � 1.4

Two-dimensional rotating fluid flow [23] 1.6 1.65

Fluid flow with no KAM surfaces [24] � � � 1.55

Zigzag billiard [19] 1.58 1.81

Polygonal Lorentz billiard [19] � � � 1.4

Honeycomb billiard [20] � � � 1.72

Wind-tree billiard [21] � � � 1.4

Mean values 1:54	 0:07 1:53	 0:16
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Shepelyansky conjecture of universality � ¼ 3 for sticking
of trajectories in the vicinity of golden invariant tori. We
also conjecture (our main result) the universality of expo-
nents � ¼ � ¼ 3=2 for trapping of trajectories in the
vicinity of stable islands. This result was based on the
analytical calculation of � ¼ 3=2 for a wide class of
area-preserving maps. It therefore represents a significant
step towards elucidating the mechanism of the direct ex-
traction of characteristic exponents in generic Hamiltonian
systems. For trapping of trajectories to regular regions in
BPS Hamiltonian mixed systems, the interval 3=2 � �b �
3 was established, given that trapping takes place. Finally,
our results agree with numerous simulations and experi-
mental results existing in the literature. We should remark,
however, that because the algebraic regime in Hamiltonian
systems can take an arbitrarily long time, in general, it is
not even clear for some systems whether the � ¼ � ¼ 3=2
was sufficiently reached. Another important aspect con-
cerns the usual lack of exact power law formulas for super-
diffusion coefficients: the nonacquaintance of their para-
metric dependence may significantly affect numerical
estimates of such exponents. As previously mentioned,
the � and � values obtained in Ref. [8] for the standard
map with K ¼ 6:476 939 are closer to the foreseen values
� ¼ � ¼ 3=2 than those obtained for K ¼ 6:716 809. This
occurs because the algebraic law (3) applies only to values
ofK very close to 2l�, since fð�cÞ ¼ 1 for such case. Now,
let us return to the Gluck et al. simulations [22]. They
conclude that � � 1:4 obtained for ! ¼ 0:8 is not univer-
sal because of the value � � 1:33 found for ! ¼ 0:88.
However, the Hamiltonian H!ðp; q; tÞ studied by them can
be derived from HKðp; q; tÞ ¼ p2=2þ Kcos2ðqÞcos2ðtÞ,
since the following scaling transformations are made:H !
H=
, p ! p=

ffiffiffiffi



p
, q ! q, t ! ffiffiffiffi



p

t, and K ! K. Choosing


 ¼ K�1 we have K ¼ !�1=2 relating HK and H!. The
Hamiltonian HK has a similar structure to the kicked rotor
Hamiltonians that lead to map (5) [29]. Therefore, as
discussed above on the standard map, it is not surprising
to note some discrepancy between the two values of �

blindly fitted for the two ! values, noting that D! ¼
K�3=2DK for the momentum variable p.
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