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For a test body orbiting an axisymmetric body in Newtonian gravitational theory with mass m and

multiple moments Q‘ (and for a charge in orbit about a charge distribution with the same multipole

moments) we show that there exists, in addition to the energy and angular momentum component along

the symmetry axis, a conserved quantity analogous to the Carter constant of Kerr spacetimes for rotating

black holes in general relativity, if the odd-‘ moments vanish, and the even-‘ moments satisfy Q2‘ ¼
mðQ2=mÞ‘. Strangely, this is precisely the relation among mass moments enforced by the no-hair

theorems of rotating black holes. By contrast, if Newtonian gravity is supplemented by a multipolar

gravitomagnetic field, whose leading term represents frame dragging, we are unable to find an analogous

Carter-like constant. This further highlights the special nature of the Kerr geometry.
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I. Introduction.—The Kerr geometry of the rotating
black hole in general relativity has long been notable for
its remarkable properties (see, for example [1,2]). Apart
from being the unique, stationary, axisymmetric, asymp-
totically flat vacuum solution of Einstein’s equations with a
nonsingular event horizon [3,4], it manifests additional
deep symmetries that are still not fully understood. One
expression of this is the statement that the Kerr black hole
has ‘‘no hair’’; its exterior spacetime geometry is com-
pletely determined by two parameters, mass m and spin
parameter a (the angular momentum per unit mass). For
example, it is possible to characterize the exterior space-
time of Kerr by a set of electric, or mass multipoles, Q‘,
and magnetic, or current multipoles, J‘, where ‘ � 0 is an
angular harmonic index. The near baldness of the geometry
is expressed efficiently by the equation [5]

Q‘ þ iJ‘ ¼ mðiaÞ‘; (1)

with Q0 being the mass m, and J1 ¼ S ¼ ma being the
angular momentum, in units where G ¼ c ¼ 1. As a
consequence, for example Q2 ¼ �ma2, and Q2‘ ¼
mðQ2=mÞ‘.

Another remarkable property of the Kerr geometry is the
existence of an additional constant of the motion for the
geodesic of a test body, beyond the trivially conserved rest
mass� of the particle, the energy E, and the component of
angular momentum Lz along the black hole’s symmetry
axis. The conservation of E and Lz arise simply from the
stationarity and axisymmetry of the geometry. The addi-
tional constant of the motion, called the ‘‘Carter’’ constant
[6], is unexpected, since the geometry is not spherically
symmetric. It is a combination of the total orbital angular
momentum L2, which itself is not conserved for generi-
cally oriented orbits, components of the particle’s linear
momentum (squared), and other variables dependent upon

the angular momentum parameter a and the angle � be-
tween the particle’s position and the symmetry axis [7,8].
The existence of this added constant is intimately linked to
the precise relationship among the moments that character-
ize the deviations from spherical symmetry, expressed by
Eq. (1). Mathematically, it owes its constancy to the ex-
istence of a so-called ‘‘Killing tensor’’ ���, a generaliza-

tion of the Killing vectors �� that generate the time and
azimuthal symmetries that lead to the conservation of E
and Lz [9]. Whether more general stationary axisymmetric
spacetimes admit a Carter-like constant is an open question
[10,11].
A consequence of the existence of the Carter constant is

that it makes the geodesic equation in Kerr completely
integrable, that is, solvable in terms of quadratures. In
practical terms, this may be a useful tool in analyses of
the orbits of small black holes around massive black holes.
These are the extreme mass-ratio inspirals that are an
important potential source of gravitational waves for the
proposed space interferometer LISA. Considerable work
has gone into trying to determine how the Carter constant
evolves with time because of gravitational radiation re-
action, and how that plays into the evolution of inclined,
inspiralling orbits around rotating black holes [12–15].
In a recent paper, Flanagan and Hinderer [16] studied the

evolution of the Carter constant using a post-Newtonian
multipole approach for the effects of radiation reaction. In
that paper, they pointed out the unusual fact that a Carter-
like constant can exist even in Newtonian gravitational
theory. For an axisymmetric body characterized by a
mass m and quadrupole moment Q2, and to first order in
Q2, there are three conserved quantities: energy per unit
mass E ¼ v2=2�U, where U is the gravitational poten-
tial; angular momentum per unit mass along the symmetry
axis e, hz ¼ h � e, where h ¼ x� v; and a Carter-like
constant
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C ¼ h2 þQ2

m

�
ðe � vÞ2 � 2Gm

r
ðe � nÞ2

�
; (2)

where n ¼ x=r. (Since we are in Newtonian gravity, the
conservation of rest mass �, which links coordinate time
and proper time, is not relevant.) They went on to show
that, for motion in a field with any individual nonzero
harmonic Q‘, with ‘ > 2, no such constant exists.

However, this raises the question, in Newtonian gravi-
tation, and for that matter in Maxwell electrostatics, does a
Carter constant exist for general axisymmetric distribu-
tions of mass (or charge)? In this Letter, we point out
that the answer is yes, if the moments satisfy the con-
straints

Q2‘þ1 ¼ 0; (3a)

Q2‘ ¼ mðQ2=mÞ‘: (3b)

Strangely, these are precisely the relations among the
electric moments imposed by the no-hair theorem (1) for
the Kerr geometry.

In this Letter, we prove this unusual property of
Newtonian gravity (Sec. II). If one augments Newtonian
gravity with a gravitomagnetic field (or, in electrodynam-
ics, if one adds a multipolar magnetic field), we are not able
to find an analogous Carter constant, unless the electric
moments satisfy the conditions above and all the gravito-
magnetic moments (or magnetic moments) vanish
(Sec. III). In Sec. IV we discuss the implications of this
result.

II. Carter-like constant of motion in Newtonian grav-
ity.—The Newtonian equation of motion of a test body
orbiting a massive body with a density distribution �ðxÞ is

a ¼ d2x=dt2 ¼ rU; (4)

where

U ¼ G
Z �ðx0Þ

jx� x0jd
3x0; (5)

where G is the Newtonian gravitational constant and �ðxÞ
is the mass density. After suitable replacements involving
charges, this is also the nonrelativistic equation of motion
of a charge in the electrostatic field of a charge distribution.

We Taylor expand 1=jx� x0j in powers of x0 and define
a set of symmetric, trace-free (STF) multipole moments

IhLi, defined by

IhLi :¼
Z

�ðx0Þx0hLid3x0; (6)

where L denotes an ‘-dimensional multi-index ijk . . . , and

x0hLi denotes a product of ‘ components of x0; x0ix0j; . . . ,
made trace-free. For example x0hiji ¼ x0ix0j � r02�ij=3. See
[17] for discussion and definitions of multipole fields and
STF tensors. We then obtain the equation of motion

ai ¼ �G
mxi

r3
þG

X1
‘¼2

ð�1Þ‘
‘!

IhLi@iL
�
1

r

�
; (7)

where r ¼ jxj, and @iL denotes ‘þ 1 products of partial
derivatives, with contraction performed over the ‘ repeated
indices. The mass and center of mass of the body are
chosen such that m ¼ I0 ¼ R

�d3x, and Ii ¼ 0 ¼R
�xid3x.
We assume that the central body is axisymmetric about

an axis characterized by a unit vector e. It then follows that

IhLi for ‘ � 2 must be proportional to an STF product of ‘
components of e, in other words,

IhLi :¼ Q‘e
hLi: (8)

The quantity Q‘ defines the mass or electric ‘-pole mo-
ment, and can be shown to be given by

Q‘ ¼
Z

�ðxÞr‘P‘ðzÞd3x; (9)

where P‘ðzÞ is a Legendre polynomial, and z :¼ e � n.
We make use of the well-known fact that

@iL
�
1

r

�
¼ ð�1Þ‘þ1ð2‘þ 1Þ!! n

hiLi

r‘þ2
: (10)

Then, substituting Eqs. (8) and (10) into the equation of
motion (7), and exploiting the identity

ehLinhiLi ¼ ‘!

ð2‘þ 1Þ!! ½n
iP0

‘þ1ðzÞ � eiP0
‘ðzÞ�; (11)

where prime denotes d=dz, we obtain the equation of
motion

a ¼ �G
mn

r2
� X1

‘¼2

GQ‘

r‘þ2
½nP0

‘þ1ðzÞ � eP0
‘ðzÞ�: (12)

Contracting this equation with v, using the fact that

v ¼ _rnþ r _n; dP‘=dt ¼ ð _n � eÞP0
‘; (13)

where an overdot denotes d=dt, and using the recursion
relation P0

‘þ1 ¼ zP0
‘ þ ð‘þ 1ÞP‘, it is straightforward to

find a constant of the motion

~E ¼ 1

2
v2 �Gm

r
� X1

‘¼2

GQ‘

r‘þ1
P‘ðzÞ ¼ 1

2
v2 �UðxÞ: (14)

This of course is the energy per unit mass, conserved
because the potential is stationary. Defining the angular
momentum per unit mass h :¼ x� v, we find that

dh

dt
¼ ðx� eÞX

1

‘¼2

GQ‘

r‘þ2
P0
‘ðzÞ: (15)

Thus the component h � e of the angular momentum along
the body’s symmetry axis is conserved, a consequence of
axisymmetry.
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But are there other nontrivial conserved quantities? Given that the only vectors in the problem are x, v, h, and e, the only
interesting possibility is the norm h2, which itself is conserved only for spherical symmetry or for an orbit confined to the
equatorial plane. Calculating its rate of change, we find

1

2

d

dt
h2 ¼ h � dh

dt
¼ h � ðx� eÞX

1

‘¼2

GQ‘

r‘þ2
P0
‘ðzÞ ¼ ð _n � eÞX

1

‘¼2

GQ‘

r‘�1
P0
‘ðzÞ: (16)

Pulling out the ‘ ¼ 2 term, inserting the relation (13) between _n and v, it can be shown that the ‘ ¼ 2 term can be written
as

3GQ2

r2
ðn � eÞ½ðv � eÞ � _rðn � eÞ� ¼ d

dt

�
GQ2

r
ðn � eÞ2

�
þQ2

m

Gm

r2
ðn � eÞðv � eÞ

¼ d

dt

�
Q2

m

�
Gm

r
ðn � eÞ2 � 1

2
ðv � eÞ2

��
�Q2

m
ðv � eÞX

1

‘¼2

GQ‘

r‘þ2
ð‘þ 1ÞP‘þ1ðzÞ; (17)

where we used the equation of motion (12) to eliminate Gmn=r2, pulled out other time derivatives, and used the recursion
relation P0

‘ ¼ zP0
‘þ1 � ð‘þ 1ÞP‘þ1. Combining this with the remaining terms in the sum in Eq. (16) and again using

Eq. (13), as well as further identities satisfied by the Legendre polynomials, we obtain finally,

d

dt

�
1

2
h2þ1

2

Q2

m
ðv�eÞ2�Q2

m
ðn�eÞX

1

‘¼0

GQ‘

r‘þ1
P‘þ1ðzÞ�

X1
‘¼2

GP‘

r‘�1

�
Q‘�Q2

m
Q‘�2

��
¼ _r

X1
‘¼2

ð‘�1ÞGP‘

r‘

�
Q‘�Q2

m
Q‘�2

�
: (18)

No amount of further manipulation can convert the
expression on the right-hand side into a total time deriva-
tive. Since the Legendre polynomials are linearly indepen-
dent, then for arbitrary orbits there will be a constant of the
motion of the chosen form if and only if

Q‘ ¼ Q2

m
Q‘�2; for all ‘ � 2: (19)

Since Q1 ¼ 0, this implies Eq. (3). The Carter constant of
motion is then given by

C ¼ h2 þQ2

m
ðv � eÞ2 � 2n � eX

1

‘¼0

mðQ2=mÞ‘þ1

r2‘þ1
P2‘þ1ðzÞ:

(20)

This generalizes Eq. (2) [Eq. (2.8) of [16]].
What kind of Newtonian source satisfies the conditions

of Eq. (3)? Its potential takes the form

UðxÞ ¼ Gm

r
þ X1

‘¼1

GQ2‘

r2‘þ1
P2‘ðzÞ

¼ Gm

r

X1
‘¼0

�
Q2=m

r2

�
‘
P2‘ðzÞ: (21)

Using the generating function for Legendre polynomials,P1
‘¼0 t

‘P‘ðzÞ ¼ ð1� 2tzþ z2Þ�1=2, we can rewrite U in

the form

UðxÞ ¼ Gm=2

jx� �ej þ
Gm=2

jxþ �ej ; (22)

where � :¼ ðQ2=mÞ1=2. If Q2=m is positive, which corre-
sponds to the prolate case, then this is the potential of two
point sources, each of mass m=2, separated by a distance

2� along the e axis. In the oblate case, � is imaginary, so
the potential, while real, does not have an interpretation in
terms of simple point masses.
III. Newtonian gravity plus gravitomagnetism.—We now

add gravitomagnetism to Newtonian theory. This is a
model of gravity that encapsulates some, though not all,
of the features of linearized general relativity (see, for
example, [18]). In electromagnetism, it is the nonrelativ-
istic Lorentz force equation for motion in a stationary
electromagnetic field. The equation of motion in this case
takes the form

a ¼ rUþ 1

c
v� ðr�AgÞ; (23)

where Ag is the gravitomagnetic potential, given by

Ai
g ¼ � 4G

c

Z �ðx0Þv0i

jx� x0j d
3x0

¼ � 4G

c

X1
‘¼0

ð�1Þ‘ð‘þ 1Þ
ð‘þ 2Þ! �iqpJhpLi@qL

�
1

r

�
;

(24)

where JhpLi are STF current multipole moments, given for

a stationary axisymmetric body by J‘þ1e
hpLi; here J1 ¼ S

is the ordinary angular momentum (or the magnetic mo-
ment) of the body.
This generates a term to be added to the equation of

motion (7) given by

�a ¼ 4G

c2
X1
‘¼1

‘

‘þ 1

J‘
r‘þ2

½nP0
‘þ1ðzÞ � eP0

‘ðzÞ� � v: (25)

This gravitomagnetic term does not affect the energy,
but it does generate a new conserved angular momentum
given by
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Lz ¼ h � e� 4G

c2
X1
‘¼1

J‘½1� ðe � nÞ2�
ð‘þ 1Þr‘ P0

‘ðzÞ: (26)

However, in this case, we find no Carter-like constant in
general. Our attempt at construction included using a linear
combination of h2, L2

z , and LzS. We find that a Carter-like
constant exists if conditions (3) are met, along with J‘ ¼ 0
for all ‘, which is our original purely Newtonian case. If
S � 0, and if we work only to first order in multipole
moments, then we find a Carter constant given by

C ¼ h2 þQ2

m
ðv � eÞ2 � 2

Q2

r
ðn � eÞ2 � 4S

cr
h � e; (27)

which is consistent with Eq. (2.23) of [16]. The absence of
a constant in the general gravitomagnetic case highlights
the very special nature of geodesic motion in the Kerr
geometry.

IV. Discussion.—In a purely Newtonian context, this
result may not have much practical significance, given
the contrived nature of the source that possesses a Carter
constant. However, it does raise a number of related
questions.

The first is purely mathematical: in general relativity,
there is an analogue to the solution for the field of two point
masses separated by a fixed distance. Known as the Bach-
Weyl solution [19,20], it is an exact, static axisymmetric
vacuum solution of Einstein’s equation, with the property
that it is singular on a line joining the two masses; the
singularity represents a strut required to hold the two
masses apart. Does the Bach-Weyl solution possess a
Carter-like constant, or equivalently, does it admit an ap-
propriate nontrivial Killing tensor?

In Newtonian gravity, does there exist a physically
reasonable, oblate distribution of matter (with Q2 < 0)
that satisfies Eq. (3)?

What happens when the equations are extended to higher
post-Newtonian orders? The gravitomagnetic model con-
sidered above included only terms linear in S ¼ ma. If
corrections to the equations of motion of order S2 are
included, can a Carter constant be found at some post-
Newtonian order and at higher order in the moments [21]?
Considerations such as these may elucidate what it is about
Kerr that makes a Carter constant possible, and may also
give insights into how to parametrize spacetimes that are
‘‘not quite’’ Kerr, in order to see how observations of
extreme mass-ratio inspirals could be used to test general
relativity in the strong-field regime [22,23].

This work was supported in part by the National Science
Foundation, Grant No. PHY 06-52448, the National
Aeronautics and Space Administration, Grant No. NNG-

06GI60G, and the Centre National de la Recherche
Scientifique, Programme Internationale de la Coopération
Scientifique (CNRS-PICS), Grant No. 4396. We are grate-
ful for the hospitality of the Institut d’Astrophysique de
Paris, where this work was carried out. We thank Emanuele
Berti, Luc Blanchet, Éanna Flanagan, Malcolm
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