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Atomic Force microscope (AFM) cantilevers commonly used for imaging soft biological samples in

liquids experience a momentary excitation of the higher eigenmodes at each tap. This transient response is

very sensitive to the local sample elasticity under gentle imaging conditions because the higher eigenmode

time period is comparable to the tip-sample contact time. By mapping the momentary excitation response,

we demonstrate a new scanning probe spectroscopy capable of resolving with high sensitivity the

variations in the elasticity of soft biological materials in liquids.

DOI: 10.1103/PhysRevLett.102.060801 PACS numbers: 07.79.Lh

Dynamic atomic force microscopy (dAFM) is a versatile
tool for the nanoscale imaging of biological membranes,
viruses, proteins, cells, and intracellular structures in buffer
solutions. dAFMmethods for compositional contrast (elas-
ticity or chemistry) in such soft materials are limited by the
low cantilever quality factor in liquids [1–5]. In what
follows, we demonstrate a significant improvement in
this capability.

The nonlinear tip-sample interaction in dAFM induces
cantilever vibrations at higher harmonics of the drive fre-
quency [1,5–10] which can provide compositional contrast
[1,5–7,9,11–13]. Under ambient or vacuum conditions, the
higher harmonics are very small and need to be enhanced
using special cantilevers [12] or bimodal excitation [14].
However, in liquids, the higher harmonics are significantly
larger, and the second harmonic has been used to map
contrasts in local elasticity [5].

In this Letter, we build on recent work [10] to show that
the tapping dynamics of soft AFM cantilevers in liquids
features a unique nonlinear transient phenomenon—that of
momentary excitation of higher eigenmodes which occurs
naturally and does not require higher eigenmode frequen-
cies to be integer multiples of the fundamental. We find
these vibrations provide an order of magnitude improve-
ment in compositional contrast on soft biological materials
in liquids when compared to second harmonic imaging [5],
under gentle imaging conditions and without the use of
specialized cantilevers or intentional bimodal excitation
[12,14].

It is instructive to measure the motion of a soft rectan-
gular microcantilever driven magnetically at its funda-
mental eigenmode when it interacts with a mica surface
in a buffer solution under gentle imaging conditions, as
shown in Fig. 1(a). The experimental deflection data from
the photodiode position detector in an Agilent 5500 AFM
system are acquired at 2.5 MHz using National Instruments
5911 boards [15]. The distinct distortions seen in the wave-

forms when the tip contacts the sample are due to the
momentary excitation of the second eigenmode [10]. This
momentary excitation enhances specific higher harmonics
of the drive frequency that lie in the vicinity of the 2nd
eigenmode frequency as seen in Fig. 1(b).
To account for this distortion, a two-mode mathematical

model for the tapping dynamics of magnetically excited,

FIG. 1 (color online). (a) Experimental waveforms of cantile-
ver deflection (cantilever properties listed in Ref. [15], sample
preparation listed in [18]) tapping on mica in buffer solution with
14.1 nm initial amplitude at 95% setpoint. (b) Discrete Fourier
Transform (DFT) of the measured tip motion on mica demon-
strating that the momentary excitation of the 2nd eigenmode
results in the enhancement of specific higher harmonics of the
drive frequency that lie in the vicinity of the 2nd eigenmode
resonance. (c) Simulated overall tip motion, 1st and 2nd eigen-
mode responses on mica for the same situation as in (a). (d) DFT
of the theoretically predicted 1st and 2nd eigenmode motion.
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rectangular microcantilever is used [10]:
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where i ¼ 1, 2 refers to the 1st and 2nd eigenmode, re-
spectively, qi’s are the tip deflections in the ith eigenmode,
and dots represent temporal derivatives. Fi, ki, Qi, and !i

are the equivalent forcing amplitudes, stiffnesses, quality
factors, and natural frequencies of the ith eigenmode,
respectively, and ! (close to !1) is the drive frequency.
The tip-sample interaction force Fts depends on the instan-
taneous gap between the tip and the sample z ¼
Zc þ ðq1 þ q2Þ, where Zc is the equilibrium separation
between the tip and the sample. Since any optical lever
based technique senses the slope at the end of the cantile-
ver, we plot the quantity u ¼ q1 þ �q2, instead of the
actual tip deflection (q1 þ q2), where� is the slope ratio
of the 2nd and 1st eigenmodes at the cantilever’s free end

[16]. Using Hertzian contact mechanics [17,18]: FtsðzÞ ¼
4
3E

� ffiffiffiffi
R

p ð�zÞ3=2 for z � 0 and otherwise zero, where R is

the tip radius, E� is the effective elastic modulus of the tip-
sample system (Emica ¼ 60 GPa, ESi ¼ 169 GPa, Poisson
ratios ¼ 0:3), MATLAB’s ODE45 solver with finely time
resolved steps is used to simulate Eq. (1).

Figure 1(c) shows the simulated tip motion (u) and plots
separately the 1st and 2nd eigenmode responses under the
same situation as Fig. 1(a). The distortion at the bottom of
the calculated waveform due to the momentary excitation
and rapid decay of the 2nd eigenmode response are faith-
fully reproduced. The spectra of the simulated 1st and 2nd
eigenmode motion are plotted in Fig. 1(d). The harmonic
content attributed to the 1st eigenmode gradually dimin-
ishes as the harmonic number increases. By contrast, the
harmonic content attributed to the momentary excitation
(recurring once every drive cycle) contributes to a cluster

of higher harmonics near the 2nd eigenmode natural fre-
quency. For this specific cantilever, the 8th through 12th
higher harmonics of the drive frequency are significantly
enhanced due to momentary excitation and are henceforth
referred to as momentary excitation (ME) harmonics.
Because the momentary excitation occurs once every drive
time period, it is periodic with respect to the drive fre-
quency. It follows that the frequency spectrum of the
momentary excitation signal contains only higher harmon-
ics of the drive frequency.
One distinct advantage of the ME higher harmonics is

the high sensitivity they exhibit to local material properties
such as elasticity. We chose purple membrane (PM) for this
study because it is a well-studied protein membrane that is
easy to deposit with submonolayer coverage [19–23]. The
sample preparation details are given in [18]. The experi-
mental setup consists of an Agilent 5500 AFM system
operating in the magnetic mode and an external Signal
Recovery lock-in amplifier. The lock-in amplifier extracts
the amplitudes of higher harmonics of the drive frequency
for AFM imaging feedback, allowing higher harmonic
images to be recorded simultaneously with normal topo-
graphic images over mica and PM (Emica ¼ 60 GPa,
EPM ¼ 100 MPa). We focused on the extracellular face
of PM which was identified by its surface roughness [21]
in the topography images.
In a sequence of systematic experiments with soft canti-

levers under gentle imaging conditions immersed in buffer
solution, we first recorded the amplitude of the 1st through
15th harmonic signals simultaneously while performing
feedback on the first harmonic. The resulting higher har-
monic images are plotted in Fig. 2 [24]. The 9th harmonic
image has the maximum contrast, which is an order of
magnitude larger than the contrast of the 2nd harmonic.
Indeed, a high degree of contrast is observed for the 8th
through 12th harmonic (ME harmonic) images. Such re-

FIG. 2 (color online). Higher harmonic images (1:3 �m� 1:3 �m) of a purple membrane (PM) patch on mica surface in buffer
solution with corresponding histograms (15.4 nm initial amplitude, 97% setpoint, cantilever properties listed in Ref. [15], sample
preparation listed in [18]). The histograms are computed by taking a specific 220 nm� 220 nm square area from the mica substrate
and the PM patch respectively (see the inserted squares in the 1st harmonic panel). In the histograms [24], dark color is on mica and the
light color is on PM. Each histogram is based on actual photodiode output at the specified harmonic.
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sults are consistently found for many soft cantilevers tested
and are listed in the supplementary material [25].

We also measured the 2nd and 9th harmonic images of
the extracellular faces of single and double layer purple
membrane patches on a mica substrate (Fig. 3). According
to Chadwick’s theory for thin membranes on rigid substrate
[26], the effect of doubling the membrane thickness is
identical to reducing the sample stiffness by half.
Remarkably, the 9th harmonic image in Fig. 3(c) clearly
resolves the different stiffness of the single and double
layers. By way of comparison, in the 2nd harmonic image
shown in Fig. 3(b), no elasticity contrast is apparent.

It is important to keep in mind that while the local elastic
modulus of PM can be sensitively affected by the pH and
ionic concentration of the buffer solution [21,22], in our
work all imaging is performed under identical high ionic
concentration conditions [18]. Furthermore, we have used
typical imaging conditions in liquids (5–15 nm free am-
plitude) and magnetic cantilevers that provide moderate
resolution images of PM. For high-resolution tapping
mode images showing the molecular structure of bacterio-
rhodopsin, it becomes necessary to use very small free
vibration amplitudes (�1 nm) and oxide sharpened tips
[23].

In order to better understand the mechanism of ME
harmonic contrast, we describe a theory of the momentary
excitation of the second eigenmode in liquids. First, it is
important to realize that the tip-sample force impulse (in-
tegral of interaction force through contact time) is roughly
independent of the material properties [27]. This allows a
simplified interaction force model defined as F�

ts ¼ Fpeak

during tip-sample contact and otherwise zero. Peak force
and contact time tc are related by a fixed tip-sample

impulseF̂�
ts ¼ Fpeaktc. Now, the second eigenmode will

respond to this force impulse following the convolution

integral q�2ðtÞ ¼
R
t
0 F

�
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!2
2
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e��t sin!2dt is the impulse response of the second
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=4Q2

2

q
, � ¼ !2=2Q2, and

t ¼ 0 marks the initiation of tip-sample contact. We can
express the state of the second eigenmode (q�2, _q�2) imme-
diately after contact with the sample (t ¼ tc) in terms of tc
as follows
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where the period of the second eigenmode is T2d ¼
2�=!2d. For t > tc, the second eigenmode rings down
dictated by the initial state q�2ðt�c Þ and _q�2ðt�c Þ
q�2ð�tÞ ¼ e���tðc1 sin!2d �tþ c2 cos!2d �tÞ; 0 � �t � T

(4)

where, �t ¼ t� tc, c2 ¼ q�2ðt�c Þ, and c1 ¼ ½ _q�2ðt�c Þ þ
�q�2ðt�c Þ�=!2d.
The above analysis offers two critical insights regarding

momentary excitation of higher eigenmodes in liquids and
its sensitivity to sample elasticity. For soft cantilevers in
liquids under typical conditions, we expect imaging forces
on the order of 1 nanonewton [28] and k2 on the order of

10 N=m. Substituting F�
peak ¼ F̂�

ts=tc into Eqs. (2) and (3),

we find that in liquids, the second eigenmode is momen-
tarily excited with an initial amplitude of �0:1 nm and
exponentially damps out before the next contact since
Q2 <!2=!1. In air, however, stiff cantilevers are used
so that k2 is about 2 orders of magnitude greater and quality
factors are high, resulting in very small amplitudes of the
second eigenmode of �0:001 nm which do not damp out,
as suggested by prior numerical studies [29].

FIG. 4 (color online). Higher harmonic amplitude sensitivity
to local sample elasticity E for a 15 nm initial amplitude
(cantilever properties listed in Ref. [15]) in liquid and using
Eq. (1) with the Hertz contact model.

FIG. 3 (color online). Mica, single and double layer PM con-
trast in buffer solution (a) topography, (b) 2nd harmonic contrast,
and (c) 9th harmonic contrast and corresponding profile and
histograms (12.5 nm initial amplitude, 92% setpoint, cantilever
properties listed in Ref. [15], sample preparation listed in [18]).
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Equations (2)–(4) demonstrate clearly that the momen-
tary excitation is strongest when tc is of the same order as
T2d, the time period of the second eigenmode, which
naturally occurs under gentle imaging conditions (small
tc). Given that the contact time is governed primarily by
elasticity, the momentary excitation of the second eigen-
mode becomes closely linked to the elasticity of the
sample.

The sensitivity of different higher harmonics to local
sample elasticity E can be estimated from the change in the
amplitude of the nth harmonic (An) vs changes in E. Using
Eq. (1) with a Hertz contact model and cantilever proper-
ties listed in [15], in Fig. 4 we plot dAn=dE of the 2nd and
9th ME harmonics vs E for two amplitude setpoint ratios.
Figure 4 illustrates that for setpoint amplitudes >90%, the
ME harmonic amplitudes are (i) considerably more sensi-
tive to elasticity than the 2nd harmonic, and (ii) the sensi-
tivity to local material elasticity is greatest for E< 2 GPa.
For lower setpoints, caution must be used to interpret
higher harmonics due to the onset of multiple tapping
regimes [27]. We conclude that for soft biological materi-
als under gentle imaging conditions, the ME harmonics are
about 1 order of magnitude more responsive than the 2nd
harmonic to local sample elasticity.

It is important to keep in mind that, in essence, momen-
tary excitation is sensitive to short-range conservative
forces. In this Letter, we designed experiments (soft mem-
branes, high ionic concentration buffer) where these forces
arise primarily from local elasticity allowing the use of
momentary excitation to map local elasticity. However, it
should be clear that experiments can be designed to exploit
the momentary excitation to map other properties such as
local electrostatic interactions or van der Waals forces of
biological samples in buffer solutions.

By way of summary, we have shown that the momentary
excitation of the second eigenmode is a naturally occurring
phenomenon unique to AFM operation using soft canti-
levers (k1 < 1 N=m, Q1 < 5) in liquids where quality fac-
tors are inherently low [10]. This phenomenon is manifest
by the enhancement of integer higher harmonics of the
drive frequency near the second eigenmode frequency and
is quite sensitive to local elasticity when gentle imaging
forces (high setpoints) are used. Taken together, this dis-
covery provides a new scanning probe spectroscopy that
significantly enhances elasticity contrast in soft biological
samples under buffer solutions.
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