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We present a Coulomb gas method to calculate analytically the probability of rare events where the

maximum eigenvalue of a random matrix is much larger than its typical value. The large deviation

function that characterizes this probability is computed explicitly for Wishart and Gaussian ensembles.

The method is general and applies to other related problems, e.g., the joint large deviation function for

large fluctuations of top eigenvalues. Our results are relevant to widely employed data compression

techniques, namely, the principal components analysis. Analytical predictions are verified by extensive

numerical simulations.
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Rare events where one of the eigenvalues of a random
matrix is much larger than the others play an important role
in data compression techniques such as the ‘‘Principal
Components Analysis’’ (PCA). PCA is helpful to detect
hidden patterns or correlations in complex, high-
dimensional datasets. A nonexhaustive list of applications
includes image processing [1,2], biological microarrays
[3,4], population genetics [5–7], finance [8,9], meteorol-
ogy, and oceanography [10]. The main idea behind PCA is
very simple. Consider a rectangular (M� N) matrix X
whose entries represent some data. For instance, Xij might

represent examination marks of the i-th student (1 � i �
M) in the j-th subject (physics, etc., with 1 � j � N). The
product symmetric matrixW ¼ XyX represents the covari-
ance matrix of the data, and it contains information about
correlations. In PCA, one first identifies eigenvalues and
eigenvectors of W. The data are maximally scattered and
correlated along the eigenvector (‘‘principal component’’)
associated with the largest eigenvalue �max. The scatter
progressively reduces as lower and lower eigenvalues are
considered. The subsequent step is the reduction of data
dimensionality, achieved by setting to zero those compo-
nents corresponding to low eigenvalues. The rationale is
that retaining the largest components will preserve the
major patterns in the data and only minor variations are
filtered out.

The above description of PCA makes clear that its
efficiency depends upon the gap between the top eigenval-
ues and the ‘‘sea’’ of smaller eigenvalues. In particular, the
further is the maximum eigenvalue �max spaced from all
the others, the more effective the projection and the com-
pression procedure will be. A question naturally arises:
how good is PCA for random data? This issue has a
twofold interest. First, the data often are high-dimensional
and have random components. Second, random ensembles
provide null models needed to gauge the statistical signifi-
cance of results obtained for nonrandom datasets. To ad-
dress the question just formulated, one needs to compute

the probability of rare events where the largest eigenvalue
�max has atypically large fluctuations. The purpose of this
Letter is to provide a simple physical method, based on the
Coloumb gas method in statistical physics, that allows us to
compute analytically the probability of these rare events
for a general class of random matrices.
Let us start by considering Wishart matrices [11], which

are directly related to PCA and multivariate statistics [12].
Wishart matrices are defined via the product W ¼ XyX of
a (M� N) random matrix X having its elements drawn

independently from a Gaussian distribution, P½X� /
exp½� �

2 TrðXyXÞ�. The Dyson indices � ¼ 1, 2 corre-

spond, respectively, to real and complex X [13]. Without
any loss of generality, we will assume hereafter that M �
N. In addition to the aforementioned PCA applications,
Wishart matrices appear in antenna selection in communi-
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FIG. 1 (color online). The dashed line shows schematically the
Marcenko-Pastur average density of states for Wishart matrices
with the aspect-ratio parameter c � N=M ¼ 1; the full line is the
distribution of the maximum eigenvalue �max. The PDF is
centered around the mean h�maxi ¼ 4N and typically fluctuates
over a scale of width N1=3. The probability of fluctuations on this
scale is described by the known Tracy-Widom distribution. The
line on the right (left) describes the right (left) large deviation tail
of the PDF, which is the object of interest in this Letter.
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cation technology [14], nuclear physics [15], quantum
chromodynamics [16], of directed polymers in random
media [17], and nonintersecting Brownian motions [18].

The spectral properties of W ¼ XyX are well known: N
eigenvalues f�ig’s of W are nonnegative random variables
with a joint probability density function (PDF) [19]

P½f�ig� / e�ð�=2ÞPN
i¼1

�i
YN

i¼1

���=2
i
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j<k

j�j � �kj�; (1)

where � ¼ ð1þM� NÞ � 2=�. This can be written as
P½f�ig� / exp½��Eðf�igÞ=2�, with the energy

E½f�ig� ¼
XN

i¼1

ð�i � � log�iÞ �
X

j�k

lnj�j � �kj; (2)

coinciding with that of a 2-d Coulomb gas of charges with
coordinates f�ig. Charges are confined to the positive half
line in the presence of an external linearþ logarithmic
potential. The external potential tends to push the charges
towards the origin, while the Coulomb repulsion tends to
spread them apart. A glance at (2) indicates that these
two competing mechanisms balance for values of � scal-
ing as �N. Indeed, from the joint PDF (1), one can
calculate the average density of eigenvalues, �Nð�Þ ¼ 1

N �
P

N
i¼1h�ð�� �iÞi � 1

N fMPð�NÞ, with the Marcenko-Pastur

(MP) [20] scaling function,

fMPðxÞ ¼ 1

2�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� xÞðx� aÞ

p
: (3)

Here, c ¼ N=M (with c � 1) and the upper and lower

edges are b ¼ ðc�1=2 þ 1Þ2 and a ¼ ðc�1=2 � 1Þ2. For all
c < 1, the average density vanishes at both edges of theMP
sea. For the special case c ¼ 1, we have a ¼ 0, b ¼ 4 and

the average density fMPðxÞ ¼ 1
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4� xÞ=xp
for 0 � x �

4, diverges as x�1=2 at the lower edge (see Fig. 1).
The MP expression shows that the maximum eigenvalue

�max has the average value h�maxi � bN for large N.

Typical fluctuations of �max are known to be of OðN1=3Þ
[12,17]. More specifically, �max ¼ bN þ c1=6b2=3N1=3�,
where � has an N-independent limiting PDF, g�ð�Þ, the
well-known Tracy-Widom (TW) density [21]. The TW
distribution for � ¼ 1, 2 has asymmetric tails [21]

g�ð�Þ � exp

�

� �

24
j�j3

�

as � ! �1; (4)

� exp

�

� 2�

3
�3=2

�

as � ! 1: (5)

In contrast, atypically large, e.g., �OðNÞ, fluctuations of
�max from its mean bN are not described by the TW
distribution. Note that these fluctuations are precisely those
that are relevant here for the PCA to work accurately.

What does the PDF Pð�max; NÞ look like for j�max �
bNj 	 OðN1=3Þ where the TW form is no longer valid?
Using general large deviation principles, Johansson [17]
proved that for large fluctuations �OðNÞ from its mean,
the PDF Pð�max ¼ t; NÞ has the form (for large N)

Pðt; NÞ � exp

�

��N2��
�
bN � t

N

��

t 
 bN;

� exp

�

��N�þ
�
t� bN

N

��

t 	 bN; (6)

where��ðxÞ are the right (left) rate functions for the large
positive (negative) fluctuations of �max. The challenge is to
explicitly compute their functional forms. The approach
developed for Gaussian matrices [22] allows us to compute
the left function ��ðxÞ [23] but it does not apply to the
right tail. The problem of computing the right function
�þðxÞ is solved hereafter, followed by the application to
Gaussian matrices and further generalizations.
The starting point of our method to compute �þðxÞ is

the energy expression (2). The MP distribution is obtained
by the saddle-point method and holds even if all eigenval-
ues are constrained to be smaller than a threshold, provided
the latter is larger than the upper edge b of the MP sea (see,
e.g., [23]). This result and the Coulomb gas physics sug-
gest that when the rightmost charge is moved to the right,
�max � bN �OðNÞ, the MP sea should a priori not be
dragged and macroscopically rearranged. Following this
physical picture, the right rate function is determined by
the energy cost in pulling the rightmost charge in the
external potential of the Coulomb gas and its interaction
with the unperturbedMP sea. This energy cost for �max ¼
t 	 bN can be estimated using Eq. (2)

�EðtÞ ¼ t� � lnðtÞ � 2N
Z

lnjt� �j�Nð�Þd�; (7)

where �Nð�Þ is the MP average density of charges and the
integral describes the Coulomb interaction of the rightmost
charge with the MP sea. This energy expression is valid up
to an additive constant, chosen such that �Eðt ¼ bNÞ ¼ 0
since our reference configuration is the one where �max ¼
bN. For large N, we scale t ¼ zN, use the MP expression
(3) and the energy cost finally takes the form

�EðzÞ
N

¼ z�1�c

c
lnðzÞ�2

Z b

a
lnðz�z0ÞfMPðz0Þdz0; (8)

valid for z � b and up to an additive constant. The
probability of such a configuration is Pðz; NÞ /
exp½���EðzÞ=2�. Making a shift of variable z ¼ bþ x,
it follows that Pðt; NÞ for large N and for t� bN �OðNÞ
agrees with the large deviation behavior in Eq. (6).
Progress is that we also have derived the explicit expres-
sion of the right rate function �þðxÞ

�þðxÞ ¼ x

2
� 1� c

2c
ln

�
xþ b

b

�

�
Z b

a
ln

�
xþ b� x0

b� x0

�

fMPðx0Þdx0; (9)

where x > 0 and the additive constant was chosen to have
�þð0Þ ¼ 0. The integral can be computed exactly as a
hypergeometric function. For c ¼ 1 (a ¼ 0 and b ¼ 4),
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�þðxÞ ¼ xþ 2

2
� lnðxþ 4Þ þ 1

xþ 4
G

�
4

4þ x

�

; (10)

whereGðzÞ ¼ 3F2½f1; 1; 3=2g; f2; 3g; z� is a hypergeometric

function (with a lengthy but explicit expression in terms of
elementary functions). For the sake of comparison, we also
report the simpler expression of the left rate function [23]:

��ðxÞ ¼ lnð2= ffiffiffiffiffiffiffiffiffiffiffiffi
4� x

p Þ � x=8� x2=64 for x � 0.
The asymptotics of �þðxÞ can be easily worked out

from Eq. (9). For large x,�þðxÞ�x=2 independently of c,
while the function has a nonanalytic behavior for small x:

�þðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

p
3b

x3=2 as x ! 0: (11)

This shows that, as �max � bN 
 OðNÞ from the right
side, the PDF of �max ¼ t in Eq. (6) behaves as

exp½��Nð ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

p
=3bÞðt=N � bÞ3=2�. Expressing the ex-

ponent in terms of the TW variable � ¼
c�1=6b�2=3N�1=3ðt� bNÞ, we recover exactly the right
tail behavior of the TW density in Eq. (5). Thus, the large
deviation function �þðxÞ matches, for small arguments x,
the behavior of the TW density at large arguments. This is
quite consistent with the fact that the scales of the fluctua-

tions for TW and �þðxÞ are OðN1=3Þ and OðNÞ, respec-
tively. In fact, our method provides, as a bonus, a physical
derivation of the right tail behavior of the TW density [21].

We confirmed theoretical predictions by extensive nu-
merical simulations. About 1011 realizations of real (� ¼
1) Wishart matrices of sizes N ¼ 10, 26, 50, 100, and with
different values of c � 1 were efficiently generated using
the tridiagonal results in [24]. We find very good agree-
ment with our analytical predictions for the right large
deviations. For example, in Fig. 2, we present the results
for c ¼ 1 and N ¼ 10. Monte Carlo numerical results are
compared to the TW density (obtained by numerically
integrating the Painlevé equation satisfied by the TW dis-
tribution [21]) and�þðxÞ in Eq. (10), multiplied by N. For
comparison, we also show the corresponding left rate
function ��ð�xÞ [23] multiplied by N2. It is clear that,
while the numerical data are well described by the TW
density near the peak of the distribution, they deviate
considerably from TW as one moves into the tails, where
our large deviation predictions work perfectly.

Our Coulomb gas method is quite general, and it can be
applied to other related problems. For example, we can
compute the right large deviation function of �max for
Gaussian random matrices. For the latter, the eigenvalues
can be positive or negative with joint PDF [25],

P½f�ig� / e�ð�=2ÞPN
i¼1

�2
i

Y

j<k

j�j � �kj�; (12)

where the Dyson indices � ¼ 1, 2, and 4 correspond to the
orthogonal, unitary, and symplectic ensembles. The qua-
dratic nature of the potential in (12), in contrast to the
linear term appearing in (1), makes that the amplitude of a

typical eigenvalue scales as � ffiffiffiffi
N

p
. The average density of

states for large N has the scaling form, �Nð�Þ �

1ffiffiffi
N

p fscð �ffiffiffi
N

p Þ, where the famous Wigner semicircular law

fscðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� x2

p
=� has compact support over [� ffiffiffi

2
p

,ffiffiffi
2

p
]. Thus, h�maxi ¼

ffiffiffiffiffiffiffi
2N

p
and typical fluctuations of

�max around its mean are known [21] to be TW distributed

over a scale of �OðN�1=6Þ. Specifically, �max ¼
ffiffiffiffiffiffiffi
2N

p þ
a�N

�1=6�, with a1;2 ¼ 1=
ffiffiffi
2

p
, a4 ¼ 2�7=6, and � is a

random variable with the TW distribution g�ð�Þ. Again,
the TW form describes the PDF Pð�max ¼ t; NÞ only in the
vicinity of t ¼ ffiffiffiffiffiffiffi

2N
p

over a small scale of �OðN�1=6Þ.
Fluctuations of �max over a scale�Oð ffiffiffiffi

N
p Þ are described

by large deviation functions, analogous to the Wishart case
in Eq. (6) but with a different scaling variable

Pðt; NÞ � exp

�

��N2��
� ffiffiffiffiffiffiffi

2N
p � t

ffiffiffiffi
N

p
��

t 
 ffiffiffiffiffiffiffi
2N

p
;

� exp

�

��N�þ
�
t� ffiffiffiffiffiffiffi

2N
p
ffiffiffiffi
N

p
��

t 	 ffiffiffiffiffiffiffi
2N

p
:

As we mentioned, the left rate function��ðxÞwas recently
computed exactly in Ref. [22], but the right rate function
�þðxÞ was yet unknown. Our Coulomb gas approach
allows us to solve this problem as well and gives for�þðxÞ

�þðxÞ ¼ z2 � 1

2
� lnðz ffiffiffi

2
p Þ þ 1

4z2
G

�
2

z2

�

: (13)

Here, z ¼ �max=
ffiffiffiffi
N

p ¼ xþ ffiffiffi
2

p
, the hypergeometric func-

tion G was defined earlier, and the additive constant was
chosen to have �þð0Þ ¼ 0. The asymptotics of�þðxÞ can
be easily derived: for large x, �þðxÞ � x2=2, while the

nonanalytic behavior �þðxÞ � 27=4x3=2=3 holds for small

x. Using the TW scaling variable � ¼ ð�max �ffiffiffiffiffiffiffi
2N

p ÞN1=6=a�, with a� defined after (12), one recovers
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FIG. 2 (color online). Numerical results (circles) for the maxi-
mum eigenvalue distribution �lnPð�max¼ t;NÞ vs the scaled
variable ðt� 4NÞ=N. Here, N ¼ 10, Wishart matrices are real
(� ¼ 1) and c ¼ 1. The Tracy-Widom distribution fits well the
data for small fluctuations while it strongly deviates in both tails,
where the agreement with large deviation predictions are ex-
cellent.
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the correct TW right tails for all � ¼ 1, 2, and 4. This
provides again a physical derivation of the TW right tail.

We have realized simulations for Gaussian matrices with
sizesN ¼ 10, 25, and 50 and for� ¼ 1 and 2. In Fig. 3, we
present the data for the PDF of �max (with N ¼ 10, � ¼ 1)
and compare with the TW form and the exact left function
�� [22] and right rate function�þðxÞ derived in Eq. (13).
As in the Wishart case, the TW form works well near the

peak t ¼ ffiffiffiffiffiffiffi
2N

p
, but it fails as we move into the tails, where

the large deviation predictions are quite accurate.
Our Coulomb gas method lends to further generaliza-

tions that we only briefly mention here. For instance, we
can compute the joint probability distribution for large
fluctuations of n top eigenvalues in Wishart and Gaussian
random matrices. If n 
 N, the energy will be given by
their mutual charge interactions, the external potentials,
and their interaction with the unperturbed MP sea.
Integrals are the same as those computed previously and
yield the explicit expression for the joint PDF. It is also
possible to use our method to compute the large deviation
function for fluctuations of the smallest eigenvalue �min for
Wishart matrices with c < 1. Note that the MP sea remains
unperturbed (and our method applies) for small fluctua-
tions of �min while the method in [22] applies for large
fluctuations of �min, which compress the MP sea.

In conclusion, we have presented a new Coulomb gas
method to compute large deviation probabilities of top
eigenvalues for a general class of random matrices. The
physical picture that emerges is quite transparent: when the
top eigenvalues are pulled to the right (towards large
values), the Marcenko-Pastur (or Wigner) sea is simply
pinched and the top eigenvalues do not drag all the other
eigenvalues. In other words, no macroscopic rearrange-
ment of the sea occurs and the top eigenvalues move in
the effective potential defined by the external potential of

the Coulomb gas and by the electrostatic potential gener-
ated by the charges in the sea. Our predictions are formally
valid for large N, yet our simulations indicate that they
work for moderate N as well. This further adds to the
relevance of the large deviation rate functions derived
here to data compression methods and their applications.
We are grateful to E. Aurell for the invitations to KTH,

where this work was initiated.
Note added in proof.—While the Letter was at the proof

stage, we became aware that our result in Eq. (13), for the
special case of GOE (� ¼ 1), was derived by a different
method in [26].
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FIG. 3 (color online). Numerical results for the maximum
eigenvalue distribution (circles) for N ¼ 10 real (� ¼ 1)
Gaussian matrices. The Tracy-Widom distribution fits well the
data for small fluctuations but deviates strongly in both tails,
where the large deviation predictions are excellent.
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