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Random scale-free networks are ultrasmall worlds. The average length of the shortest paths in networks

of size N scales as lnlnN. Here we show that these ultrasmall worlds can be navigated in ultrashort time.

Greedy routing on scale-free networks embedded in metric spaces finds paths with the average length

scaling also as lnlnN. Greedy routing uses only local information to navigate a network. Nevertheless, it

finds asymptotically the shortest paths, a direct computation of which requires global topology knowl-

edge. Our findings imply that the peculiar structure of complex networks ensures that the lack of global

topological awareness has asymptotically no impact on the length of communication paths. These results

have important consequences for communication systems such as the Internet, where maintaining

knowledge of current topology is a major scalability bottleneck.

DOI: 10.1103/PhysRevLett.102.058701 PACS numbers: 89.75.Hc

Random scale-free networks are ultrasmall worlds [1–
3]. The average and maximum lengths of the shortest paths
in scale-free networks with power-law degree distributions
PðkÞ � k��, � 2 ½2; 3�, scale with network sizeN as lnlnN
[1,2,4]. However, finding such shortest paths requires
global topology knowledge, which is not available to nodes
in many real networks. It may seem surprising at first that,
having no global topological awareness, nodes can find any
paths to destinations at all. In Ref. [6], we address this
apparent paradox by showing that the observed topological
characteristics of complex networks maximize their navi-
gability, measured by the efficiency of the greedy routing
process.

Greedy routing (GR) [7–11] relies on the hidden metric
space abstraction [12]. In this abstraction a network is
embedded in a metric space, with distances in this space
representing intrinsic node similarities. To route informa-
tion to a given destination, a node forwards the information
to its network neighbor closest to the destination in this
space. This general mechanism underlies processes rang-
ing from search in social networks [13] to protein folding
[14]. The existence of hidden metric spaces under real
networks in general is a conjecture, but we found empirical
evidence of their existence for some real networks, such as
the Internet or some social networks [12]. In other cases,
the metric space may be visible. In the airport network, for
example, this space is geographic [6,15].

In Ref. [15], numerical experiments show that scale-free
networks are navigable in a wide region of parameters.
Specifically, GR and its modifications are found to perform
generally well, in terms of the length and number of
successful paths, on scale-free networks embedded in a
plane. The GR efficiency is attributed to network hetero-
geneity. In Ref. [6], the analytic results and simulations
show that not only heterogeneity but also clustering affect
strongly the GR efficiency. The thermodynamic limit is

considered, and a network is called navigable if, in this
limit, GR can find paths for a macroscopic fraction of
source-destination pairs. Navigable networks are shown
to have sufficiently strong clustering and heterogeneity of
node degrees, i.e., � � 2.
Here we show analytically and in simulations that the

average hop length of paths that GR produces in these
navigable networks scales with network size as ���
lnlnN=j lnð�� 2Þj. Given that the average length of short-
est paths in these networks, as shown in Refs. [1,2], also
scales as D� lnlnN=j lnð�� 2Þj, we conclude that the
GR paths are asymptotically shortest.
To obtain this result, we use the generic class of models

introduced in Ref. [12]. These models generate scale-free
networks embedded in metric spaces as follows. Given a
target network size N, first assign to all nodes their coor-
dinates in the metric space and an additional hidden vari-
able � representing their expected degrees. To generate
scale-free networks, the variable � is power-law distributed
according to �ð�Þ / ���, � 2 ½�0;1Þ, where �0 is the
minimum expected degree. The metric space can be any
homogeneous and isotropic D-dimensional space. Nodes
are distributed in it with a uniform density � that is set to
� ¼ 1without loss of generality. Then each pair of vertices

i and j is connected by an edge with probability rðxÞ, x �
dij=ð��i�jÞ1=D, where dij is the distance between the two

vertices in the metric space and �i and �j are their expected

degrees.
A proper choice of the parameter�, which depends on a

specific form of the connection probability rðxÞ, guarantees
that the average degree of vertices with hidden variable � is
�kð�Þ ¼ �, so that � can indeed be identified with the
degree. The exponent � in �ð�Þ is then the power-law
exponent of the degree distribution in the resulting net-
works [12]. These properties of the model hold for any
dimension D of the metric space and for any form of the
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connection probability rðxÞ, as long as the integralR1
0 xD�1rðxÞdx is bounded. We thus have a very versatile

class of models since we can independently fix the average
degree and the exponent � without specifying the function
rðxÞ, which can then be used to control clustering in the
network. For example, in Ref. [12] we use rðxÞ ¼ ð1þ
xÞ��, with �>D and � ¼ �ðD=2Þ�ð�Þ=½2�D=2hki�ð��
DÞ�ðDÞ�. This form of rðxÞ leads to the following two
extremes. In the limit � ! D, clustering vanishes. The
network loses its metric properties and becomes equivalent
to a random graph, where the probability that two nodes are
connected depends only on their expected degrees and not
on the metric distance between them. In the opposite
extreme � ! 1, clustering converges to a finite value,
and the topology of the network is strongly influenced by
the metric properties of the underlying space. This latter
extreme yields networks lying in the navigable region.

We next give an intuitive explanation, illustrated in
Fig. 1, for why GR is efficient in these navigable networks
with strong coupling between network topology and under-
lying geometry. Suppose the GR process starts at some
low-degree node and intends to reach a destination located
far away in the metric space. Ideally, the process should
proceed to hubs, high-degree nodes, that likely cover long
distances by their numerous connections. However, GR is
degree-agnostic; it checks only underlying distances.
Therefore, this ideal scenario with propagation through
the hubs can be implemented only if the node’s neighbor
closest to the destination is also its highest-degree neigh-
bor. But this condition is the more likely satisfied the faster
rðxÞ decreases, because the faster rðxÞ decreases, the
stronger the dependency between a node’s degree and the
characteristic scale of distances that the node covers by its
connections. This dependency is simple: the higher the

degree of a node, the larger its characteristic distance scale.
(In the non-navigable limit � ! D, this dependency dis-
appears.) Consequently, if the next node along a path has a
higher degree, then the node after the next one has an even
higher degree, and the metric distance between these nodes
also increases. On the other hand, the faster rðxÞ decreases
(e.g., the larger �), the stronger the clustering. We thus see
that, in the navigable case with strong clustering, GR first
travels over a sequence of nodes with increasing degrees
and increasing internode distances. At some point, after the
current distance to the destination becomes comparable to
the internode distance, this pattern changes, and the pro-
cess completes in a finite number of hops.
We now put this intuition on quantitative grounds. We

first compute the probability that a node of expected degree
� has a neighbor with expected degree �0 at a distance d
from it: Pð�0; dj�Þ. Using results from Refs. [12,16], it is
easy to show that this probability is

Pð�0; dj�Þ ¼ �ð�0Þ
�hki�dD�1r

�
d

ð���0Þ1=D
�
: (1)

The marginal distribution with respect to � is

Pð�0j�Þ ¼ �0�ð�0Þ
hki (2)

for any function rðxÞ and any dimension D. We next
compute the correlation between variables �0 and d con-
ditioned on �. Using Bayes’ rule and Eq. (2), we write

Pðdj�; �0Þ ¼ Pð�0; dj�Þ
Pð�0j�Þ ¼ dD�1

���0 r
�

d

ð���0Þ1=D
�
: (3)

The average metric distance between two connected verti-
ces with expected degrees � and �0 is then

�dð�; �0Þ ¼ ð���0Þ1=D
Z xc

0
xDrðxÞdx; (4)

where xc ¼ dcðNÞð���0Þ�1=D and dcðNÞ is the maximum

distance between nodes in the metric space: dcðNÞ � N1=D.
If rðxÞ ¼ ð1þ xÞ��, with �>Dþ 1, then the integral

in Eq. (4) is bounded, and we observe positive correlations
between degrees and distances: the higher the node degree,
the longer the characteristic distances that it covers by its
connections, which is exactly the property guaranteeing
GR efficiency. If D<�< 1þD, the integral in Eq. (4)
diverges, and we obtain

�dð�; �0Þ � ð���0Þð�=DÞ�1½dcðNÞ�Dþ1��: (5)

In the limit � ! D, �dð�; �0Þ loses any dependence on �
and �0 and becomes a large value diverging in the thermo-
dynamic limit. As a consequence, degrees and distances
are no longer correlated. The furthest neighbor no longer
tends to have the highest degree. These arguments explain
why the network cannot be navigated if it loses its metric
properties and clustering vanishes.

FIG. 1 (color online). Illustration of the efficient greedy rout-
ing mechanism. The figure shows the current vertex v with its
local neighborhood. The size of each vertex is proportional to its
degree, and the plane represents the underlying metric space.
Vertex v0 is the neighbor of v, which is closest to the target and
also one of its furthest and highest-degree neighbors. At the next
hop, greedy routing proceeds from v0 to v00, reaching an even
higher-degree vertex, traveling an even longer distance, and
getting much closer to the target.
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We now shift our attention entirely to navigable net-
works with �>Dþ 1 and compute the lengths of greedy
paths in them. As the first step, we calculate the maximum
expected degree �c;nnð�Þ among all neighbors of a node of

expected degree �. In a finite-size network, the variable �

is bounded by a natural cutoff �c � N1=ð��1Þ [5]. This
cutoff is calculated as the value of � ¼ �c such that we
expect to find only one node with � > �c out of a sample of
N vertices: N

R
�c
�ð�Þd�� 1. Following the same reason-

ing, the value of �c;nnð�Þ can be evaluated as

�
Z �c

�c;nnð�Þ
Pð�0j�Þd�0 � 1; (6)

which leads to

�c;nnð�Þ �
�
�1=ð��2Þ; � < ���2

c :
�c; � > ���2

c :
(7)

This result, together with Eq. (4), yields the following
expression for the average distance to the next node along
a GR path from a node of degree �:

�d nnð�Þ � �ð��1Þ=Dð��2Þ for � < ���2
c : (8)

Equations (7) and (8) turn out to be central to our
analysis. First, we see from Eq. (7) that only if 1=ð��
2Þ> 1, i.e., if � < 3, is the degree of the next node along a
GR path, on average, higher than the degree of the current
node. This property explains why only scale-free networks
with � < 3 are navigable.

Equation (8) also shows that the expected distance be-

tween the next node and the current node of degree ��
Nð��2Þ=ð��1Þ is �dnn � N1=D, which is of the order of the
maximum distance between all nodes in the metric space.
In other words, we can cross the entire network in a single
hop, landing at a node located at a finite and size-
independent distance from the target. Putting these obser-
vations together, we conclude that the time to reach a target

from a low-degree source located far away (�N1=D) from
the target is roughly the number of hops that it takes to

reach a node of expected degree �� Nð��2Þ=ð��1Þ, which is
a size-dependent contribution, plus the number of hops
needed to cover a finite distance from this node to the
target, which is a size-independent contribution.

Following these observations, we iterate Eq. (7)

��þ1 / �1=ð��2Þ
� ; � ¼ 0; 1; . . . ; (9)

to find the value of � such that �� � Nð��2Þ=ð��1Þ. The
solution is

�� ¼ Aþ ln½lnN þ B�
j lnð�� 2Þj ; (10)

where A and B are functions of � and hki.
This result is remarkable in many respects. First, in the

large-size limit we obtain ��� lnlnN, meaning that greedy
paths are ultrashort. Second, the prefactor in front of the

logarithm is just a function of �, surprisingly independent
of the average degree. Finally, this prefactor is equal to the
prefactor of the average shortest-path lengths in scale-free
networks [1,2]. It was also shown in Refs. [1,2] that
fluctuations around the average shortest-path lengths are
constant. Therefore, in the thermodynamic limit the
shortest-path length distribution becomes a delta function.
This fact, together with the equality between the average
shortest- and greedy-path lengths, implies that for N � 1
the distribution of greedy-path lengths also converges to
the same delta function. Consequently, in large networks,
all greedy paths are shortest paths.
To check the accuracy of our theory, we perform exten-

sive numerical simulations for the model with D ¼ 1 (a
circle) and � ¼ 1, which is equivalent to taking rðxÞ ¼
e�x and � ¼ 1=ð2hkiÞ. We also fix the minimum expected
degree to �0 ¼ 2. We note that parameters �0 and � are
dummies and can be set to arbitrary values; the only
independent parameters in the model are the average de-
gree hki, the degree exponent �, and clustering strength �.
Fixing �0 ¼ 2 helps to generate networks that are fully
connected almost surely. If �0 is fixed to a constant, then
the average degree depends on � as hki ¼ ð�� 1Þ�0=ð��
2Þ. Varying hki is desirable as it allows us to directly check
with simulations if there is indeed no dependency on hki of
the prefactor in Eq. (10). We also verified that networks
with a fixed average degree yield the same results.
Once a network with these parameters is generated, we

simulate the GR process by choosing at random a source
and destination and forwarding at each node to the node’s
neighbor closest to the destination on the circle. The num-
ber of source-destination pairs is 106, and the results are
averaged over a number of network realizations ranging
between 400 and 4000. This process is performed for
different power-law exponents � and network sizes N.
The average GR path length �� is then computed as a
function of N for different �.
The top plot in Fig. 2 shows the results of these simu-

lations. We then fit empirical ��ðNÞ to a function of the form
A1 þ A2 ln½lnN þ A3�, where the constants A1, A2, and A3
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FIG. 2 (color online). Left: Average length of GR paths in gen-
erated networks with different values of � as a function of the
system size N. Solid lines are fits of the form A1 þ A2 ln½lnN þ
A3�. Right: Parameter A2 obtained from the fit of ��ðNÞ compared
to the theoretical prediction A2 ¼ j lnð�� 2Þj�1.
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are free parameters estimated using the least square fit to
the data. The bottom plot in Fig. 2 shows the empirical
estimate of the coefficient A2 compared with the theoreti-
cal prediction A2 ¼ j lnð�� 2Þj�1. The agreement is very
good for the values of � close to 2 and deteriorates as �
approaches 3. This deterioration is a consequence of the
mean field approximation that assumes that at each hop the
degree increases, which is true only on average. In fact, for
� approaching 3, there is a increasingly non-negligible
probability of making a hop toward a smaller-degree
node [6]. We have also checked [17] that the fluctuations

of GR path lengths around their average
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 � ��2

p
stay

constant with increasing N or even slightly decrease for
small �. These observations confirm that in the thermody-
namic limit the GR path length distribution converges to a
delta function.

In summary, we have shown that greedy routing finds
asymptotically the shortest paths in scale-free networks
with strong clustering and power-law node degree distri-
bution exponents � < 3. Given that topologies of many
real networks do have these properties [18–20], our find-
ings imply, surprisingly, that, even without any global
knowledge of network topology, nodes in complex net-
works can propagate information along the shortest routes.
In other words, topologies of many real networks have a
peculiar structure that guarantees that the lack of global
topological awareness imposes asymptotically no impact
on the structure of information flows in the network: with
or without the global topology knowledge, information can
flow along the shortest routes. There are other, regular
networks, such as lattices, that also possess these proper-
ties, but they require specific embeddings into specific
spaces. Greedy routes on scale-free networks, on the other
hand, are shortest regardless of the specifics of a hidden
metric space or connection probability.

Complex networks thus have the structure that allows
them to perform, in the most efficient way, one of their
most basic and common functions: to propagate or signal
information to specific targets through a complex network
maze whose global connectivity is unknown to any node. It
remains an open question if real networks evolve to be-
come navigable [21,22] or which networks do have hidden
metric spaces underneath and which do not. Even if such
spaces exist, it may be quite challenging to identify their
exact structure. At the same time, our findings have opti-
mistic practical implications as they open up a possibility
to find shortest-path routing strategies for the Internet that
would not require any global topology knowledge. The
requirement for routers to have and constantly update
this knowledge is a major scalability bottleneck in the
Internet today [23].
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