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The binodals and the nonergodicity lines of a binary mixture of hard-sphere-like particles with a large

size ratio are computed for studying the interplay between dynamic arrest and phase separation in

depletion-driven colloidal mixtures. Contrary to the case of hard core plus short-range effective attraction,

physical gelation without competition with the fluid-phase separation can occur in such mixtures. This

behavior due to the oscillations in the depletion potential should concern all simple mixtures with a

nonideal depletant, justifying further studies of their dynamic properties.
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The question of gelation in soft condensed matter sys-
tems has been the subject of a lively debate in the past few
years [1–8]. On the one hand, following the extension of
the conceptual framework developed for ordinary glasses
[9,10], a broad picture of the arrest in soft matter ones has
emerged from the recent literature [11]. In comparison
with the ‘‘repulsive’’ glasses in which the arrest is driven
mostly by repulsions (‘‘caging’’ mechanism), soft matter
ones exhibit also a transition to different glassy states
driven by short-range effective attractions (‘‘bonding’’
mechanism). At least in the effective fluid approach, such
effective attractions, defined in a broad way, exist in a
variety of colloidal suspensions, as, for example, globular
proteins, colloidal silica or colloid-ideal polymer mixtures,
etc. (see, for example, respectively [12–15]). Despite their
quite different origins and shapes, these attractions could
lead to attractive glasses—or gels at low density—pro-
vided that their range is short enough.

On the other hand, the interplay between such arrested
states and the equilibrium phase transitions in colloidal
systems is not completely established. The possibility for
colloids with short-range attraction to form equilibrium
physical gels—that is, reversible gels in the equilibrium
fluid phase—has indeed been questioned, since this attrac-
tion plays also a role in the fluid-fluid phase separation.
These questions have been analyzed theoretically mostly
on the basis of generic model potentials (square well,
Yukawa potential, etc.) that retained only what seemed
the most significant feature of the effective interaction:
the short range. For such simple models, increasing the
attraction strength also favors the fluid-fluid transition. The
question is then to know if gelation should occur outside
the fluid-fluid coexistence domain, setting aside a possible
crystallization. Early mode coupling theory (MCT) studies
[9] answered positively for sufficiently short attraction
ranges [8,11,16] (similar observations were also made on
less asymmetric mixtures [17,18], for which a multicom-
ponent view is, however, more suitable). Nevertheless,
subsequent numerical simulations showed that the glass

line intercepts in fact the fluid-fluid binodal for such short-
range potentials (see [1] for a review). From the ensuing
scaling with the attraction range of the dynamics and of the
static transition lines, a new paradigm was developed
according to which physical gelation—associated with
short-range attraction—would be observed only through
an arrested fluid-fluid phase separation [1–3]. It should
apply to all of the systems for which this picture of the
interactions—essentially, a hard core repulsion and a very
short-range attraction—holds, as those mentioned above
[12–15]. Very recent experiments seem to corroborate this
paradigm [13,19,20], though some previous studies
[6,7,21] are compatible with the opposite view. This moti-
vated the search of a more complex interaction in order to
favor equilibrium gelation (long-range electrostatic repul-
sion [22], ‘‘patches’’ [23], etc.).
The purpose of this Letter is to revisit this view focused

on ‘‘short-range attractive colloids’’ and the resulting cor-
relation between gelation and phase separation. We first
show that the reduction of the effective interaction to a hard
core plus a short-range attraction is in fact insufficient for
discussing the interplay between dynamic arrest and phase
instability in these systems. The simple example of an
asymmetric binary mixture of hard spheres will show
that the characteristics of the effective potential (range,
depth, repulsive barriers, etc.) can affect differently the
nonergodicity and phase transition lines: while preserving
gelation, this may go up to suppressing the fluid-fluid
coexistence and hence the very question of their competi-
tion. The behavior of real ‘‘depletion’’ mixtures can thus
strongly depart from that observed when the depletion
effect is reduced to the short-range attraction, as for the
Asakura-Oosawa (AO) potential in colloid-ideal polymer
mixtures. This considerably widens the scenarios for the
interplay between the gelation and the equilibrium phase
transition in colloids. We also show in this manner that
simple binary mixtures of hard colloids might fulfil the
conditions for equilibrium gelation, since the effective
potential is there complex enough. Its oscillations at the
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scale of the small particles stabilize the physical bonds—
due to the repulsive barrier close to contact—and remove
the fluid condensation for some size ratios. While these
well-known oscillations are often neglected in the litera-
ture, we predict situations in which they actually lead to
equilibrium gelation.

The binodals and the nonergodicity transition lines have
been computed for a model binary mixture, in the effective
one-component fluid representation (see [24] for details).
The thermodynamic variables are the big particle packing
fraction �b, the small particle density in the reservoir ��

s ,
and the temperature T. The total effective potential be-
tween the colloids is the sum of the direct interaction
potentials and the indirect one, computed at infinite dilu-
tion from the RHNC (reference hypernetted chain) integral
equation. The RHNC and RHNC/variational perturbation
free energies were used to compute the fluid-fluid and the
fluid-solid binodals, respectively, in the ð�b; �

�
sÞ plane. The

accuracy of this method has been established for the size
ratios investigated here (see, e.g., [25–27]).

The nonergodicity transition line was computed from
the MCT using the RHNC static structure factors. The one-
component MCT for gelation in mixtures raises two differ-
ent questions: first, that of its reliability in the vicinity of
the fluid-fluid phase transition, due to the critical density
fluctuations (see [8] for a discussion and [28] for simula-
tions). This should not, however, constitute a problem here,
since we precisely consider situations in which there is no
fluid condensation. In the same situations, the question of
cluster aggregation that occurs at very low density should
also not arise. The second question concerns the reduction
of the mixture to an effective one-component fluid.
Qualitatively, the fluid of small spheres is expected to be
ergodic in the free volume for the size ratios and the
densities considered here (��

s < 0:4). The use of an effec-
tive potential in these situations is also substantiated by
adiabaticity arguments [29]. More quantitatively, recent
studies of star polymer mixtures [30] and simulations
[31] partly support this view. Finally, due to the absence
of fluid condensation in all of the situations we discuss
here, a possible involvement of the small spheres in the
arrest—above some packing fraction—should make gelat-
ion occur at an even lower packing fraction of the big ones
than in the one-component representation. This would just
reinforce our conclusions on gelation in these systems.

We first present the phase diagram of the hard-sphere
(HS) mixture with diameter ratio q ¼ �2=�1 ¼ 5 (Fig. 1).
A comparison with the AO model is also presented (inset)
for the fluid-fluid transition and the nonergodicity lines.
We observe for the HS mixture a quite distinct pattern, in
comparison with the AO or other generic short-range po-
tentials: first, in the HS mixture, the fluid-fluid binodal is
absent (none is found at size ratios q � 8 [26,32]), and,
second, the nonergodicity line is shifted to lower packing
fractions (for ��

s ¼ 0:8, we find �g ¼ 0:32 and 0.19 for

q ¼ 5 and 8, respectively). Since the fluid-fluid instability
is absent, one should thus observe gelation in the equilib-
rium homogenous fluid, provided that crystallization is
prevented by a small amount of polydispersity [33]. This
is in sharp contrast with the behavior found with the AO
model, for which the metastable fluid-fluid binodal exists,
and the nonergodicity transition is confined to the dense
fluid region (the behavior observed with the present MCT
for ��

s > 0:6 should be taken with care, as it occurs just
below the fluid-fluid transition [7,8]). These features are
typical of usual models of attractive potentials with a
moderate range [8,16]: while the fluid-fluid binodal is
metastable with respect to the fluid-solid one due to the
short range, this range is not short enough to induce low
density gelation. In the HS mixture, on the contrary, gela-
tion is observed, while the fluid condensation disappears.
This specific behavior of the mixture of hard colloids

may now be correlated with the characteristics of the hard-
sphere depletion potential. Here the repulsion between the
small hard particles, ignored in AO model, leads to a more
complex behavior of the HS depletion potential �eff

HS. In

place of a single well with range 1=q, �eff
HS is oscillatory

with repulsive barriers and wells varying in a complex way
with q and ��

s . Concerning the gelation line, one expects
some influence of the repulsive barriers of �eff

HS (Fig. 2).

The most important one is located right after the depletion
well. Its magnitude �"rep becomes comparable to the
depletion well depth �"att when ��

s increases. The con-
sequences on gelation are shown in the inset in Fig. 1,
which compares the nonergodicity transition lines for the
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FIG. 1. Phase diagram of the effective fluid for q ¼ 5. Solid
lines: binodals; dashed line: nonergodicity line (dotted
line: q ¼ 8). Inset: Fluid-fluid binodal and nonergodicity lines
for the Asakura-Oosawa (solid line), HS depletion potentials
(long-dashed line), and truncated potential �� (short-dashed
line). The fluid-fluid binodal (diamonds) is present only for the
AO model.
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full depletion potential �eff
HS and for a truncated version �

�
(without barriers): ��ðx � �Þ ¼ �eff

HSðxÞ and ��ðx > �Þ ¼
0, with x ¼ ðr� �bÞ=�b the reduced distance and �� the
reduced width of the attractive well. For ��, the nonergo-
dic state is confined to the dense region, as for the AO
potential. The repulsive barrier favors thus arrest at lower
density. A simple interpretation of this observation is that
the barrier stabilizes the ‘‘bonds’’ by making it more
difficult for the particles to escape from the depletion
well. For example, for ��

s ¼ 0:8, the energy �" ¼ �"att.
�"rep associated to such a bond is�" � 5:4kBT, instead of
�" � 3kBT for �� (Fig. 2). This interpretation is substan-
tiated by the behavior of the localization lengths rloc of the
two models [computed here from the simple Gaussian
approximation fq � expð�q2r2loc=6Þ of the nonergodicity

factor [6]]: along the nonergodicity transition line, rloc is
indeed systematically smaller with �eff

HS than with ��.
Now, is the repulsive barrier the unique ingredient to

stabilize equilibrium gelation? The role of barriers has
indeed already been pointed out for this purpose. They
are, for example, artificially introduced in numerical simu-
lations for stabilizing homogenous gelation against fluid
condensation [34]. Besides the fact that the barriers are
here real, an important difference is that, in our case, they
are irrelevant for the question of the fluid condensation,
which is absent both with�� and with�eff

HS. This absence is

due to the reduction with ��
s of the width of the attraction

well (inset, Fig. 2): for ��
s ¼ 0:8, e.g., this width is about

4 times smaller than its low density limit �ð0Þ � 1
q , the AO

density independent value. This is why the fluid condensa-
tion is absent for �eff

HS and not for �AO. Homogenous

gelation in the hard-sphere mixture results thus from a

subtle mechanism: on the one hand, the repulsive barrier
favors arrest at lower density by stabilizing the bonds, and,
on the other hand, the fluid condensation is suppressed by
the simultaneous reduction with ��

s of the width of the
attraction well.
Both in order to test the robustness of these conclusions

and to anticipate the behavior of real suspensions, we have
considered mixtures of hard spheres with a very short-
range tail in the interaction potential between unlike

ones: VsbðrÞ
kBT

¼ "� �sb

r expð� r��sb

�sb
Þ. We took values typical

of ‘‘residual’’ interactions in hard-sphere-like colloids (say,
via the surface layers as in sterically stabilized ones or
charge screening with very small range [35]): "� ¼ �1:5
and �sb ¼ �s

100 . With q ¼ 5, this corresponds, for example,

to �s ¼ 0:2 �m, �b ¼ 1 �m, and �sb ¼ 2 nm [35]. Such
a priori ‘‘small’’ interactions can have, in fact, important
consequences on the binodals at high size asymmetry (see
[35] for q ¼ 10). We show in Fig. 3 the situation for q ¼ 5.
The fluid-fluid transition remains absent, as with pure hard
spheres. The gel line is moderately shifted towards lower
(greater) values of�b according to the sign of Vsb, a natural
consequence of the enhancement or the reduction induced
by solvation of the depletion mechanism. This does not
modify qualitatively the picture relative to pure hard
spheres, contrarily to the case q ¼ 10. On this basis, it
seems reasonable to predict that an equilibrium gel can
form in mixtures of hard-sphere-like colloids with moder-
ate asymmetry (q� 5), irrespective of the details of the
residual interactions.
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FIG. 3. Gelation lines of a mixture of hard-sphere-like parti-
cles for q ¼ 5 and small-big particle Yukawa potential with
range �sb ¼ �sb

100 . The contact value is "sb ¼ 0 (dashed line—

pure hard spheres), þ1:5kBT (dotted line), and �1:5kBT (full
line). Inset: The same for q ¼ 10. Dashed line: pure hard
spheres; solid line: "sb ¼ 1:5kBT.
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In summary, we have studied the interplay between the
arrested states at low density and the phase separations for
mixtures of hard colloids. It is shown that the oscillations
with separation between the particles of the effective in-
teraction potential can be responsible for quite specific
behaviors. In particular, the repulsive barriers provide a
stabilizing mechanism of the physical bonds involved in
gelation. As the fluid-fluid phase transition is not observed
for some size ratios, gelation is predicted to occur without
competition with the fluid condensation. Thus, the behav-
ior of simple asymmetric mixtures can depart from that
expected from the ‘‘hard core short-range attraction’’ pic-
ture. This observation should stimulate reconsideration at
the experimental level of these already known systems (see
[36]). They indeed have been much less considered in the
literature than colloid-polymer mixtures, perhaps because
of the greater convenience of using polymers as the deple-
tant. At the theoretical level, additional simulations should
be useful to assess the validity of the methods used to study
gelation and, in particular, the quantitative predictions
made here from the one-component mode coupling theory.
If confirmed, it should have practical applications, besides
the additional insight it provides on the mechanisms of
arrest in soft condensed matter systems.
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