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The lateral-line system is a unique mechanosensory facility of aquatic animals that enables them not

only to localize prey, predator, obstacles, and conspecifics, but also to recognize hydrodynamic objects.

Here we present an explicit model explaining how aquatic animals such as fish can distinguish differently

shaped submerged moving objects. Our model is based on the hydrodynamic multipole expansion and

uses the unambiguous set of multipole components to identify the corresponding object. Furthermore, we

show that within the natural range of one fish length the velocity field contains far more information than

that due to a dipole. Finally, the model we present is easy to implement both neuronally and technically,

and agrees well with available neuronal, physiological, and behavioral data on the lateral-line system.
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All fish and some aquatic amphibians possess a unique
sensory facility, the lateral-line system. This system is
composed of mechanosensory units called neuromasts lo-
cated on the trunk of the animal. They consist of small
cupulae, gelatinous flags protruding into the water, which
are sensitive to the local water velocity [1].

Aquatic animals use their lateral-line system to localize
predator, prey, obstacles, or conspecifics. The lateral line
enables even blind fish to navigate efficiently through their
environment and discriminate different structures and ob-
stacles [2]. It is supposed that aquatic animals analyze the
hydrodynamic structure of the velocity field to determine
size, speed, and presumably shape of the object generating
it [2,3]. This can be done even indirectly, for example,
through the wake [3].

The question we now pose, and answer, is whether and
how a passive detection system such as the lateral line can
both localize a moving object and determine its shape in an
incompressible fluid such as water, or air at low velocities.
Passive localization has several advantages over active
localization such as not getting noticed by the object you
observe and being far less energy consuming.

Most studies, both experimental and theoretical [4,5],
used a vibrating or translating sphere as a stimulus.
Because of the special symmetry of the sphere, the result-
ing velocity field is exactly that of a dipole—no matter
whether vibrating or translating [6]. Of course, not all
objects in nature are spheres. Only for vibrating bodies
could one identify [7] the influence of their shape on the
flow field, showing a reasonable dominance of the dipole.
The literature lacks, however, a general explanation in a
more general setting. In this Letter, we show how much, or
little, information is available in the velocity field, how one
can extract it, and to what extent it depends on the distance.

More, in particular, we show how hydrodynamic object
characterization in terms of a mathematical description in
three dimensions is possible by means of a multipole

expansion (ME). In addition, we show how an aquatic
animal, called a detecting animal (DA), such as a predator,
can read out the velocity field and reconstruct the shape of
a stimulus, viz., a submerged moving object (SMO), such
as prey; cf. Fig. 1.
A velocity field vðrÞ ¼ �r�ðrÞ represents an adequate

and natural stimulus to the lateral-line system and can be
described by a multipole expansion of the velocity po-
tential �ðrÞ [6] because the relevant fluid dynamics is
well described by the Euler equation [8]. Using the
real spherical harmonics YR

lm and the multipole moments

q ¼ ð. . . ; qlm; . . .Þ, we can expand the velocity potential�,
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For the sake of simplicity, we focus on rotationally
symmetrical bodies whose surface S can be described
through coordinates & 2 ½0; �� and � 2 ½0; 2��,

Sð&; �Þ ¼ N cos

�
&�

�3

� ��1=3ffiffi
2

p
sinð�=2Þ sinð&Þ cosð�Þ
��1=3ffiffi

2
p

sinð�=2Þ sinð&Þ sinð�Þ
�2=3 cosð&Þ

0
BBB@

1
CCCA: (2)

FIG. 1 (color online). Submerged moving objects (SMOs)
appear in widely varying shapes. Furthermore, aquatic stimuli
may, but need not move at all, for example, vortex structures that
are generated in the wake of a swimming fish or at the end of the
fins [3]. These stimuli imprint information on the flow field that
can be read out by the lateral-line organs [10].
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The parameters � 2 ð0; �=2� and � 2 ð0;1Þ determine
the shape of the surface. We note that vortex structures can
be described by means of an ME as well [6].

Because of the Euler equation, only the Neumann
boundary condition v � nS ¼ 0 is realizable where nS de-
notes a normal vector to the surface S.

In terms of spherical coordinates, we can calculate the
components of vðrÞ ¼ �r�ðrÞ ¼ ðvr; v�; v’Þ at r through
coefficients arlm, etc., so that

vr ¼
X1

l¼1

Xl

m¼�l

qlmarlm; v� ¼ X1
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The equations (3) can be written in matrix form v ¼ Aq
with the matrixA containing the known coefficients arlm.

To explicitly calculate the single multipole moments
qlm, we have to specify the boundary condition with re-
spect to nS and, for the sake of simplicity, the uniform
speed v1 of the SMO in the stationary frame of reference.
The boundary condition then reads

v ðrSÞ � nS ¼ nS � v1 ¼ nS
TAðrSÞq with rS 2 S:

(4)

The influence of the multipoles in (3) decreases with
increasing l. Hence we expand the velocity field only up
to a certain number k and set qlm ¼ 0 for l > k. We are thus
dealing with an approximation, denoted by q̂. To find the
best approximation, we take several positions 1 � i � n
randomly distributed on an SMO surface and calculate the
associated surface normals ni, the matrix Ai, and write it
line by line into the matrix T :¼ ð. . . ;ni

TAi; . . .Þ. The
index i of the velocity components wi :¼ v1 � ni of the
vector w corresponds to ni and therefore labels the same
position. To calculate the multipoles we simply solve the
linear equation T q̂ ¼ q. The multipole moments follow
from q̂ ¼ ðT TT Þ�1T Tw [9]. The solution approximates
the multipole coefficients up to a given k optimally in the
sense of minimal quadratic error.

Introducing a characteristic length scale �, say the body
length of the SMO, into Eq. (1) we get

v ðrÞ ¼ X

l;m

qlmð�=rÞlþ2flmð�;’Þ; (5)

where flmð�; ’Þ are functions depending only on the an-
gular � and ’ coordinates and can be calculated by means
of (1). In doing so, we obtain dimensionless multipole
moments. On the one hand, we can compare them inde-
pendently of the SMO size. On the other hand, we see from
vðrÞ ¼ P

l;mð�=rÞlþ2qlmflmð�; ’Þ how the influence of

each multipole varies in dependence upon the size � of
the SMO and the distance r to the DA. This result tells us
that the shape of the SMO is only important if the size �
and the distance r are of the same magnitude. It is, e.g.,

obvious that plankton, which is ten to a hundred times
smaller than the DA, will not transmit any shape informa-
tion through the flow field—and in this case shape infor-
mation is not needed either. However, as stated before, in
schooling, mate finding, or predator-prey behavior object
information can make a difference. Moreover, as shown in
Fig. 2, different shapes are represented by different sets of
multipole moments.
How, then, can aquatic animals such as fish reconstruct

the above multipole moments from water velocity mea-
sured through their lateral-line system? Of course the
animal has to fulfill this task under the influence of omni-
present noise and the limitations of its neuronal system.
Our reconstruction model for three-dimensional shape

recognition is based on a maximum-likelihood estimator
[11]. That is, we are looking for the multipoles q with the
highest probability given the measured velocities w on the
DA’s body. So to speak, this estimator maximizes the
conditional probability pðq; r0jwÞ for the SMO’s center
of mass r0, which also has to be determined by means of
the information available through the DA’s superficial
neuromasts, the water velocities. The velocity size wi at
organ i is given by wi ¼ T ðr0; riÞqþ ni.

FIG. 2. Different shape parameters result in distinguishable
sets of multipole components even for l � k ¼ 3 in (3); �
increases along the vertical axis and � along the horizontal
one. We have calculated q̂ through a raster of 30 000 randomly
distributed positions on each moving object’s surface and used
objects with length of about 5 cm and a matching moving speed
v1 ¼ 0:01 m=s. Each volume is normalized to the volume of the
unit sphere. It is therefore fair to say that the dipole stays almost
constant while q20 varies according to � and q30 to �. The
relative error 4ðkÞ :¼ jT q̂� wj=jwj on S as calculated for
rotationally invariant elliptic bodies gives 4ðkÞ< 0:4 for k ¼
3 and � < 2. It converges slowly to about 0.15 for k ! 1. For
� � 2 a multipole expansion cannot describe the correct veloc-
ity field. This, however, is not too restrictive. For example, the
fish in Fig. 1 can be described by � � 1 (left fish) and � � 2
(right fish).
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We note that the matrix T ðr0; riÞ depends on the SMO
position r0 and the position ri of the lateral-line organ i
(DA). Noise is modeled by adding independent Gaussian
random variables ni with mean 0 and standard deviation�n

to the wi. All positions r0 are of equal probability. We
therefore take a Gaussian probability distribution
pðq; r0Þ � expð�q2=2�2

qÞ. Instead of maximizing the

combined probability based on Bayes law, we maximize
its logarithm Lðq; r0Þ :¼ ln½pðq; r0jwÞ�. Defining � :¼
�n=�q, we just have to maximize

Lðq; r0Þ ¼ �f½w�T ðr0; riÞq�2 þ �2q2g (6)

with respect to the multipole-moment vector q and r0. The
necessary condition for a maximum of the likelihood
Lðq̂; r̂0Þ at the correctly estimated position r̂0 is

@L

@q
ðq; r̂0Þjq¼q̂ ¼ ½ðT TT þ �2Þq�T Tw�jq¼q̂ ¼ 0; (7)

which leads to a linear system of equations solvable by
means of the pseudoinverse technique [9],

q̂ ¼ ðT TT þ �2Þ�1T Tw: (8)

We estimate the set of multipoles q̂ given only the mea-
sured velocities w at the lateral-line organs. A neuronal
implementation of these calculations is straightforward
and can be done easily by neuronal hardware; see Fig. 3.
Thus the position and the appropriate multipole moments
can be calculated neuronally.

To test whether it is possible for aquatic animals using
the above method to determine SMO’s position and shape,
we have applied noise to the input signal wi. We have used
�n ¼ 10�4 m=s as standard deviation of the noise, which
corresponds to the velocity threshold of Xenopus’s lateral-
line organ [1]. Furthermore, we define a signal-to-noise
ratio, SNR :¼ v1=�n, that dominates the performance as
compared to the number of neuromasts, cf. [12]. The more

multipoles we use, the more positions are of high proba-
bility because one has more parameters to fit the measured
wi’s. Thus the estimated position gets ambiguous but the
shape estimate improves. Choosing the right� for a certain
k can compensate this effect and enables a faithful local-
ization. In Fig. 4 we show the ability of our method to
estimate the SMO position r̂0.
Following the ansatz of the neuronal model (Fig. 3) we

have calculated the multipole moments at the estimated
position, i.e., not only at the correct position but also at
r̂0 þ �r where �r accounts for the continuity of real space,
a limited number of map neurons as well as a slight
localization uncertainty (Fig. 4). Our model can recon-
struct q̂r0 even under noisy conditions and at slightly
wrong positions [Fig. 5(a) and 5(b)]; for example, the
fish bodies of Fig. 1 (see also Fig. 2) can be recognized
and distinguished. Thus object localization as well as
object recognition based on the estimation of multipoles
is possible.
In the following, we discuss the limitations of the pro-

posed method and likewise the theoretical limitation of
aquatic animals’ ability of object recognition. To compare
the quality of different multipole estimates q̂ at different

distances d, we define �q :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihðq̂lm � hq̂lmiÞ2i

p
=hq̂lmi as a

quality measure. Here �q labels the normalized standard

deviation due to wrongly estimated positions r̂þ �r and
noise. For small �q the estimation error in qlm is small and,

in spite of a slightly wrong position, the shape parameter �
can be recognized. For values �q > 1 a shape reconstruc-

tion based on the estimated q̂lm is impossible.
For the octupole q30, the critical distance where the error

�q starts to grow extremely fast is SMO’s size itself. For

localization, the critical distance can be taken as the length
of DA’s lateral-line system, say a fish length, which is in

FIG. 3. Neuronal implementation of (8) is straightforward. In a
first step ðAÞ ! ðBÞ the multipole components q̂lmðr0Þ (B) are
calculated for different positions r0 from the measured water
velocities wi at the neuromasts (A). This corresponds to a net-
work of synaptic connections between the lateral line and the
central nervous system. The strength of the individual connec-
tions can be computed from the entries of the right-hand side of
(8) or can be learned neuronally [14]. In a second step ðBÞ !
ðCÞ, Lðq; r0Þ is calculated from the q̂r0, which can also be done
by feedforward connections, cf. (6). The maximum Lðq̂; r̂0Þ
indicates the correct position of the SMO and selects the optimal
q̂r0 from step ðCÞ ! ðBÞ, cf. (7).
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FIG. 4. The lateral line [(A), gray line] of the detecting animal
(DA) is centered at ð0; 0Þ. The distance between the object’s
(SMO, gray area) center of mass r0 and the detecting lateral line
is just less than both the lateral line and the SMO length. Using
the dipole term ðk ¼ 1Þ only, we can easily reconstruct the
position r̂0 [(A), cloud of black points around r0], a result
consistent with that of Franosch et al. [4]. If we take only three
multipole moments (k ¼ 3) as an efficient minimal model, our
method allows a proper estimate of both position [(A), small
open circles] and form (cf. Fig. 5), even though more positions
are now likely to occur. For both cases, 40 reconstructions have
been depicted with �n ¼ 10�4 m=s, moderate SNR :¼
v1=�n ¼ 100, and 500 neuromasts. (B) shows log½Lðq̂; r0Þ�
corresponding to the neuronal map of position estimation.
There is no ambiguity; cf. Fig. 3(c).
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case of a predator hunting for prey larger than the critical
length of shape reconstruction (Fig. 6).

The ME method can quantify stimulus characteristics.
Because the flow field need not be generated by a sub-

merged moving object alone, the method can also be
applied to characterize composite situations such as
schooling or vortex structures found in the wake of a
fish. The ME is useful only if the distance between the
object (SMO) and detector (DA) is approximately of the
same size as the SMO, or shorter. Otherwise the ME
reduces to its dipole simplification.
Our object-recognition model agrees well with biologi-

cal findings and provides a theoretical understanding of
hydrodynamic object perception through the lateral line.
Furthermore, we now understand the fundamental restric-
tions for any (neuronal) evaluation of lateral-line data.
Finally, these findings can also be applied to biomimetics
[13], e.g., to improve passive naval navigation systems.
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FIG. 6. Relative reconstruction error �q30 (dashed line) of the
multipole component q30 as defined in the main text. It shows
that for distances d larger than a moving object’s size (5 cm)
multipole reconstruction is not possible. The solid line depicts
the localization error hkr̂0 � r0ki, which starts to grow fast at a
distance comparable to the length of the detecting animal
(10 cm). This agrees well with experimental findings where
localization performance starts decreasing at distances beyond
the fish body size [5]. For discrimination tasks, fish have to be
very close to the object under investigation [2].
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FIG. 5. Reconstructed octupole strength q̂30 normalized by the
dipole strength q10 for � ¼ �=2 and different shapes � (first line
of Fig. 2) at different distances d. Since we have used an
approximation with only three components, q̂30 differs from
the real octupole q30 (black line). The gray-colored region
depicts the value of q̂30 with noise at the most likely position
(light grey) and at slightly wrong estimated positions (dark grey)
as explained in the text and corresponding to Fig. 4. Remarkably,
q30 is an approximately linear function of �. We see (A, B) that
for small distances between SMO and DA differently shaped
bodies can be distinguished, even in spite of noise and truncated
ME. If d approaches SMO’s size (5 cm), the reconstruction starts
getting blurred (B, C). At higher distances (D) no strong corre-
lation between q̂30 and � and thus no shape can be recovered.
Nevertheless, the two fish in Fig. 1 can be distinguished at least
in (A) and (B) by means of estimating �. For the full set of
multipoles see [12].
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