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We propose a novel mechanism of cell motility, which relies on the coupling of actin polymerization at

the cell membrane to geometric confinement. We consider a polymerizing viscoelastic cytoskeletal gel

confined in a narrow channel, and show analytically that spontaneous motion occurs. Interestingly, this

does not require specific adhesion with the channel walls, and yields velocities potentially larger than the

polymerization velocity. The contractile activity of myosin motors is not necessary to trigger motility in

this mechanism, but is shown quantitatively to increase the velocity. Our model qualitatively accounts for

recent experiments which show that cells without specific adhesion proteins are motile only in confined

environments while they are unable to move on a flat surface, and could help in understanding the

mechanisms of cell migration in more complex confined geometries such as living tissues.
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In addition to its obvious importance for biology, cell
motility has motivated numerous studies in the physics
community. Identifying simple mechanisms of self-motion
of soft condensed matter is an important challenge for
physics, cell biology, and biomimetic material technology.
Sustained motion at low Reynolds number necessitates a
constant energy input, and therefore an active system, that
is a system driven out of equilibrium by an internal or an
external energy source. The cell cytoskeleton is a striking
example of such an active system. It is a network of long
semiflexible filaments made up of protein subunits, inter-
acting with other proteins such as motor proteins which use
the chemical energy of adenosine triphosphate hydrolysis
to exert active stresses that deform the network [1]. Other
examples of active systems range from animal flocks to
bacterial colonies [2,3] and vibrated granular media [4].

Modeling cell motility has inspired both experimental-
ists and theoreticians, who have now distinguished two
main different mechanisms: polymerization (treadmilling)
and contractility. Both polymerization induced motion
[5,6] and contractility induced spontaneous flows have
now been observed in vitro [1], and studied theoretically
[7–9] and numerically [10]. In all models the key ingre-
dients of motion are an energy input to compensate dis-
sipation and sufficient adhesion or friction with a substrate
to acquire momentum. The usual picture of cell locomo-
tion is then as follows: the cell lamellipodium builds strong
adhesion points with the substrate and pushes forward its
membrane by polymerizing actin. At the back, the cell
body contracts and breaks the adhesion points. In particu-
lar, the overall cell velocity is then limited by the actin
polymerization rate (which, however, varies substantially
between cell types), in agreement with available experi-
mental data [11–13].

In a recent paper [14] (see also [15] for another cell
type), it has been observed both in vivo and in vitro that
mutant dendritic cells (DC) that are unable to produce
active integrin complexes (adhesion proteins) display sus-
tained motility in confined environments (tissues or syn-
thetic polymeric gels), whereas they fail to move on flat
two-dimensional substrates due to their reduced adhesion
ability. These observations suggest the existence of an
alternative mechanism of motility to the adhesion depen-
dent picture outlined above. Here we propose a new, simple
mechanism of motility which accounts for these observa-
tions. This mechanism is mainly powered by actin poly-
merization at the cell membrane, and strongly relies on
geometric confinement. Interestingly, it does not necessi-
tate strong specific adhesion, and yields velocities poten-
tially larger than the polymerization velocity. This
confinement induced motility mechanism is backed by
in vitro experiments of DC motility in microfabricated
channels [16] (see Fig. 1).
We first introduce our model in its minimal form of a

polymerizing viscoelastic gel confined in a channel. We
then refine this model to mimic motile cells in confine-
ment. Finally, we show quantitatively that the contractile
activity of myosin increases the velocity of motion.
The model, which relies on the hydrodynamic theory of

active gels [7], is as follows. We consider an incompress-
ible viscoelastic film confined in a bidimensional channel
of width b. Note that this bidimensional geometry mimics
the experimental conditions of channels of rectangular
section (Fig. 1), and that the case of a cylindrical confining
channel can be treated with minor modifications. The axes
are defined with x along the channel and z across it. The
confining walls are placed at z ¼ 0 and z ¼ b. We denote
the components of the velocity of the gel by vi, and the
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strain rate by uij ¼ ð@ivj þ @jviÞ=2. We assume that the

gel is described by a linear Maxwell model of viscoelas-
ticity. The constitutive equation relating the strain rate to
the deviatory stress tensor�ij is then written 2�uij ¼ ð1þ
� D
DtÞ�ij, where � is the shear viscosity, � is a typical

relaxation time, and D=Dt denotes the convective deriva-
tive. For dilute polymer gels, � is very small and the gel
behaves as a viscous fluid. At higher concentrations, or for
more cross-linked gels, � becomes very large and the gel
behaves as an elastic medium. In what follows we assume
that the gel is in either of the two regimes. For the sake of
simplicity we assume here that the gel is incompressible,
which means that � depends on pressure P only. We define
a critical pressure such that �ðP< P�Þ ¼ 0 (viscous re-
gime) and �ðP> P�Þ ¼ 1 (elastic regime). We next sup-
pose that the gel is polymerized at the gel/substrate
interface with speed vp � vzðx; z ¼ 0Þ ¼ �vzðx; z ¼ bÞ
in the viscous regime, as depicted in Fig. 1. This is justified
by the common observation of actin polymerization acti-
vators such as WASP proteins preferentially located along
the cell membrane [11,17]. In the case of DCs, actin
filaments can anchor perpendicularly to the cell membrane,
forming structures called podosomes where polymeriza-
tion takes place, therefore inducing an inward flow of actin
as it is assumed in our model [18]. Finally, we assume
viscous friction at the channel walls z ¼ 0 and z ¼ b, and
write �xz ¼ �vx where � characterizes the friction.

We now derive the dynamical equations of the system in
the lubrication approximation (b � L where L is the
typical length of the system). In this limit the Reynolds
number is small and the velocity field viðx; zÞ can be
obtained from the force balance @xP ¼ �@2zvx and the
condition of incompressibility uxx þ uzz ¼ 0. Defining
the average velocity along the channel vðxÞ ¼ ð1=bÞ�

R
b
0 vxðx; zÞdz, we obtain the following Darcy’s law:

vðxÞ ¼ � b2

12�

�
1þ 6�

b
��1

�
dP

dx
: (1)

Including the depolymerization of the gel kd, mass conser-
vation of the gel reads dv

dx ¼ 2vp=b� kd, which gives in

turn

d

dx

�
ð1þ ~��1Þ dP

dx

�
¼ 12�ð2vp � bkdÞ

b3
; (2)

where vp and the nondimensional friction ~� � �b=6� can

be a priori functions of P and x.
Two boundary conditions are needed to determine the

pressure profile PðxÞ. We neglect the friction with the
surrounding fluid in the channel and set the pressure at
the leading edge, which is assumed to coincide with the
point x ¼ L, as PðLÞ ¼ 0, which gives the first boundary
condition. Note that if the pressure at the leading edge is
finite due to an external force, our results apply with an
unimportant shift in the pressure field. We look for sta-
tionary states with broken symmetry and positive velocity
and therefore the pressure is a decreasing function of x. We
then argue that if the system is large enough, there exists a
traveling front of gel of length L in the fluid phase, trav-
eling at velocity V. The back boundary of this front fluid
part coincides with the point x ¼ 0 where the pressure
reaches the threshold P�, behind which is a growing elastic
part. Such a denser elastic region at the back of DCs, called
the uropod, is indeed well reported [19], and is character-
ized by a higher concentration of cross-linkers. As the
velocity of the elastic part should be zero one has vð0Þ ¼
0 ¼ dP

dx jx¼0, giving the second boundary condition which

allows the explicit calculation of the pressure field. The
self-consistent condition Pð0Þ ¼ P� gives in turn an equa-
tion enabling the calculation of the length L of the fluid
front. We then write that the velocity V of the front is given
by the calculated velocity of the flow plus the polymeriza-
tion velocity at the leading edge vðLÞ þ vpðLÞ. We stress

that the flow velocity is forward, i.e., in the same direction
as the moving leading edge. Note that the length L of the
fluid front is constant, which necessitates that the elastic-
fluid boundary moves at the same velocity V.
Qualitatively, the value of the length L is dictated by the

steepness of the pressure gradient, and therefore by the

friction ~�. If ~� is small, then only very long fluid fronts can

move. We show now quantitatively that the coupling of ~�
with the pressure field actually enables short fluid fronts
to move even with a low bare friction. The key ingredients
are as follows. Following [20] we argue that the fric-

tion coefficient ~� depends on the normal constraint in the
case of a polymeric gel. Indeed qualitatively a high nor-
mal constraint increases the attachment rate of polymers
onto the channel walls by lowering the entropic barrier,
and decreases the detachment rate. It is shown in [20]
that in the regime of moderate tangential speed, one has

x

z
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pv
z=b

P=0P=P*

z=0

x=0 x=L

channel wall

elastic rear

−

fluid front

FIG. 1 (color online). (a) RICM image of a dendritic cell
moving (to the right) in a channel of 4 �m width. The dark
zone at the back of the cell (left) indicates a large contact of the
membrane with the channel wall (independent of the nucleus,
dotted line), and therefore a high normal constraint, compared to
the front (right). The typical observed velocity reaches
12–15 �m=min in channels and 4–6 �m=min on a flat surface.
(b) Channel geometry and model. The arrows show the flow
direction.
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~� ¼ ~�0e
�ðP��nnÞ, where in our geometry the normal stress

�nn ¼ �zz for both walls at z ¼ 0 and z ¼ b. Next, follow-
ing standard ratchet models [21], the polymerization speed
at the cell membrane is assumed to depend on the normal

constraint in the gel according to vp ¼ v0
pe

��ðP��zzÞ.
These assumptions make Eq. (2) an autonomous equation
for P, which is completed by the two boundary conditions
discussed above.

To our knowledge, such an equation cannot be solved
analytically in the general case. In the regime of small �
(defined by �P� � 1), vp can be taken as constant and an

analytical approximation scheme can be proposed, which
enables a discussion of the motility mechanism. We first

neglect the elongational shear stress and write ~� � ~�0e
�P.

This assumption underestimates the friction, and therefore
the pressure field. Equation (2) can then be integrated and
yields an implicit equation for the pressure field to lowest
order P0:

P0 þ
~��1
0

�
ð1� e��P0Þ ¼ 6�ð2v0

p � bkdÞ
b3

ðL2 � x2Þ: (3)

This first expression P0 gives a lower bound of the pressure
field, and provides a satisfactory approximate (Fig. 2). To
go further, we use P0ðxÞ to determine the lowest order
velocity profile v0

i ðzÞ and calculate �0
zz ¼ 2�@zv

0
z .

Equation (2) is then resolved using this calculated numeri-
cal value of�0

zz, yielding the next order P
1ðxÞwhich in turn

can be used for further iterations. Using realistic values for
the parameters corresponding to the actin cytoskeleton,
used in [20,22], the procedure converges rapidly. Note
that in the general case of any �, the first iteration giving

P0ðxÞ has to be performed numerically, and then the same
procedure applies.
This mechanism therefore produces a forward flow

which relies on a pressure buildup to P� in the gel, here
induced by confinement. It requires a minimal system size
L given by taking x ¼ 0 in Eq. (3). Interestingly, this can
be obtained even for a very low bare friction coefficient �0,
since the exponential dependence of the friction on the
pressure field permits the effective friction to reach large
values for finite L, enabling motion.
On the other hand, Eq. (3) shows that L increases faster

than linearly with b, indicating that this mechanism would
not be significant in the case of a gel on a flat open
substrate. In this case, which depicts the lamellipodium
of a cell lying on a flat substrate (see [7]), the typical
confining length b is large (of the order of the cell size),
and the typical length L necessary to build a strong pres-
sure gradient is very large (L> cell size). As the pressure
gradient in the cell is then much weaker than in the con-
fined case, the friction with the substrate remains close to
its bare value, yielding a much smaller momentum transfer
with the substrate. Additionally, we then expect that the
pressure remains below P�, and that no elastic phase is
formed, thus preventing forward flow. Without confine-
ment, our model therefore suggests a retrograde flow,
that is in the opposite direction to the moving leading
edge, as previously modeled and observed for lamellipodia
[7,23] on flat substrates. The flow direction, and therefore
the direction of the pressure gradient in the gel, constitutes
the main difference between the confinement induced
mechanism of motility that we report here and the standard
picture of cells lying on flat substrates.
Experimentally the pressure field can be quantified in-

directly by measuring the effective contact area of the cell
membrane using Reflection Interference Contrast Micros-
copy (RICM). Figure 1(a) [16] shows clearly that for a DC
confined in a channel a larger contact area at the back of the
cell is seen, indicating a backward pressure gradient in
qualitative agreement with our theoretical prediction.
We now argue that this mechanism of confinement

induced motility could be used by cells such as DCs to
move in confined environments like channels. Extra hy-
potheses have to be added to the above model in order to
more realistically capture the geometry of a moving cell.
Instead of an open system, we assume now that the back
edge is a thin slice where the gel is in its elastic regime,
which mimics the uropod observed at the back of the cell.
Additionally, we assume �P� � 1 such that the friction of
the uropod with the channel walls is very large, enforcing
vð0Þ ¼ 0. To conserve the total cell mass, we further
assume that in the uropod the gel depolymerizes at the
speed of the leading edge V ¼ vðLÞ þ vpðLÞ (which de-

fines the over all speed of the cell). A high depolymeriza-
tion rate in the uropod can be justified by the high pressure
and a depletion of free actin monomers due to the forward
flow. With these hypotheses, the model presented above
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FIG. 2 (color online). Pressure profile. Dashed red: numerical
value P0 for � ¼ 1 and � ¼ 0:01 kPa�1; dotted blue: analytical
expression Eq. (3) for � ¼ 1, � ¼ 0; dot-dashed green: numeri-
cal value P1 for � ¼ 1, � ¼ 0; solid black: numerical value P0

for � ¼ 0, � ¼ 0:01 kPa�1. Other parameters (estimates from
[20,22]): L ¼ 10 �m, b ¼ 1 �m, � ¼ 10 kPa s, kd ¼ 0:1 s�1,
v0
p ¼ 0:1 �ms�1, �0 ¼ 0:1 kPa s�m�1. v0

p is taken as the

speed of DCs on a surface which is expected to be the actin
polymerization speed [13]. �0 is taken as very small (lowest
estimate in [20] which is 100-fold smaller than in keratocytes
[7]) to mimic the low adhesion of integrin knockout DCs.
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mimics a cell moving in a channel with velocity V, and
shows that the confinement induced motility mechanism
can indeed be used by cells. Interestingly, for the parameter
values used in Fig. 2 the front velocity is calculated to be
�10 �m=min which is close to the velocity that can be
reached by DCs in collagen matrices [14] and in channels
(up to 12–15 �m=min) [16] which significantly is larger
than the polymerization velocity taken as the speed on a flat
surface, 4–6 �m=min [16,24].

Finally, we show that the coupling of the contractile
effect of myosins with the normalized polarization field
pi of actin filaments (parametrized by its angle �with the x
axis) can also be taken into account. The polarization
�ðzÞ ¼ �0 þ �1 where �0 ¼ � 	

2 ð1� 2z
b Þ is the static con-

figuration which satisfies the normal anchoring boundary
condition and �1 is assumed to be linear in v0

p. Taking into

account the active stress �active
ij ¼ ~
ðxÞ��pipj from [7],

we obtain a perturbative solution around v0
p ¼ 0 for the

polarization and flow fields (shown in Fig. 3). Here it is
also useful to consider the lubrication approximation b !
0. To lowest order in this approximation, the polarization is
given by its static configuration �0 and one obtains a
generalized Darcy’s law:

vðxÞ ¼ � b2

12�
ð1þ ~��1Þ dP

dx
� b~
ðxÞ��

4	�
; (4)

where ~
ðxÞ�� stands for the active coupling of myosins to
actin filaments (see [7] for review), which is to linear order
proportional to the myosin concentration. This equation
shows that the contractile active stress induced by myosins

(~
��< 0), increases the velocity of the actin flow, as
shown in Fig. 3.

In conclusion, the motility mechanism of DCs in con-
fined environments is strikingly different from the standard
picture of cell motility on open flat substrates, and is well
captured by our model of confinement induced motility.

Importantly, this mechanism is widely independent of
adhesion properties with the substrate, since the mecha-
nism relies on an enhancement of friction due to a pressure
buildup, and does not require specific adhesion proteins. In
particular, this result is compatible with the experiments of
[14], where it is found that integrin knocked out DCs are
motile only in confined environments. Finally, the effect of
myosin induced contractility can be taken into account,
and yields a further enhancement of motility, in agreement
with experiments [14,16].
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FIG. 3 (color online). Polarization (black) and flow velocity
with (dashed green or gray) and without (blue or dark gray)
myosin. Polarization arrows point in the direction of actin
polymerization. The active term is taken as ~
ðxÞ�� ¼
~
��ðL� xÞ=L for x > 0 such that there are more myosins at
the back of the cell.
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