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Using the local control theory we derive analytical expressions for magnetic field pulses that steer the

magnetization of a monodomain magnetic nanoparticle to a predefined state. Finite-temperature full

numerical simulations confirm the analytical results and show that a magnetization switching or freezing

is achievable within few precessional periods and that the scheme is exploitable for fast thermal switching.
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Introduction.—A fast magnetization reversal of mag-
netic nanoparticles is of a key importance for the realiza-
tion of high-rate magnetic recording [1,2]. Several
techniques are currently envisaged for the magnetization
switching such as the laser-induced spin dynamics [3]
based on the inverse Faraday effect [4,5], the reversal
triggered by external static or alternating magnetic fields
[6–12] or by a spin-torque acting on the magnetization due
to a passing spin-polarized electric current [13,14].
Transverse magnetic field pulses are also efficient for a
swift reversal [15–20], and if finely tuned in duration [2,21]
can even lead to a quasiballistic switching. A further
fundamental issue, addressed here is how to steer the
magnetic dynamics to a desirable state by external fields.
Generally, a number of control schemes have been estab-
lished mainly in quantum chemistry [22–25]. Particularly
interesting is the local control theory (LCT) [24,25] in
which the control fields are constructed from the response
of the system offering thus a physical interpretation of the
control mechanism. We adopt the idea of LCT to steer the
magnetization dynamics of nanoparticle by transverse
magnetic pulses. We obtain transparent analytical expres-
sions for the control pulses that allow a fast switching or a
quasi ‘‘freezing’’ at a predefined magnetization state. For
the scheme to be applicable, the field durations have to be
shorter than the field-free precessional period but no spe-
cial pulse-duration tuning is required; the field strengths
are to be determined according to the analytical expres-
sions provided here. In our control strategy the magneti-
zation dynamics proceeds via sudden impulsive kicks
guiding the magnetization towards a predefined direction;
the pulses are intervened by field-free magnetization pre-
cessions and relaxation. A similar mechanism has recently
been realized experimentally [12] using spin-polarized
picosecond current pulses resulting in a spin-transfer-
torque-driven stroboscopic dynamics. The robustness of
the predictions we demonstrate with finite-temperature
full numerical calculations and for different types of an-
isotropy fields. We confirm the analytical results and un-

cover the potential of this scheme for fast thermal
switching that can be the basis for fast thermal sensors.
Theory.—We consider a nanoparticle with a size such

that it displays a long-range magnetic order and is in a
single domain remanent state. Examples are Fe50Pt50
[2,26] or Fe70Pt30 [2,27] nanoparticles which possess, re-
spectively, a uniaxial or a cubic anisotropy. Following the
Landau-Lifshitz-Gilbert (LLG) approach we model the
dynamics of the magnetization direction by the classical
evolution of a unit vector S. The particle’s magnetic mo-
ment at saturation �S is assumed time invariant. The
system energy derives from H ¼ H A þH F, where
H A and H F ¼ �S � b0ðtÞ stand, respectively, for the
anisotropy and the Zeeman energy of S in the external
field b0ðtÞ. For a particular type of anisotropy described by
fAðSÞ we write H A ¼ �DfAðSÞ with D being the anisot-
ropy constant. SðtÞ develops according to LLG equation
[28] as @S

@t ¼ � �
ð1þ�2ÞS� ½BeðtÞ þ �ðS� BeðtÞÞ�, where

BeðtÞ ¼ �½1=ð�SÞ�@H =@S is the effective field, � is the
gyromagnetic ratio and � is the Gilbert damping parame-
ter. In spherical coordinates where the z axis is along the
easy axis we specify S by the azimuthal (�) and polar (�)
angles and cast the LLG equation as [2,29]
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Hereafter the time is measured in units of the field-free
precessional period Tprec and the energy H in units of
�SBA where BA ¼ 2D=�S is the maximum uniaxial an-
isotropy field. E.g., for Fe50Pt50 we have T

prec ¼ 5 ps, the
maximum anisotropy field is �7 T and the magnetic mo-
ment per nanoparticle is around 22 000�B [26]. The field-
free solution of (1) is known; e.g., for a uniaxial anisotropy
and starting from the angles �fðt ¼ �t0Þ and �fðt ¼ �t0Þ one
finds (e.g., [30])
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‘‘þ’’ (‘‘�’’) refers to 0< �<�=2 (�=2< �< �).
To control the dynamics we apply along the x and y axis

two magnetic field pulses bx and by of durations 2" and

shapes fðtÞ centered at some moment t ¼ t0. Their relative
strengths are given by the mock angle �0, with tan�0 ¼
jbyj=jbxj; the total fields strength is jfjb0=ð2"Þ. Hence
b0ðtÞ ¼ bx þ by is

b 0ðtÞ ¼
�
fðtÞb0
2" ðcos�0ex þ sin�0eyÞ; t0 � "< t< t0 þ "

0; elsewhere:

(3)

Switching to a new time variable �ðtÞ ¼ t�ðt0þ"Þþ2"
2" we

derive for the equation of motion

1

2"

d�

d�
¼ p

�

1

sin�

@H A

@�
� �

sin2�

@H A

@�

�

� pb0fðtð�ÞÞ
2"

�
�

cos�

sin�
cos��þ �

sin��

sin�

�

;

1

2"

d�

d�
¼ p

�

� 1

sin�

@H A

@�
� �

@H A

@�

�

þ pb0fðtð�ÞÞ
2"

� ½� sin��þ � cos� cos���; (4)

where �� ¼ ���0 and p ¼ 1=ð1þ �2Þ. If the magnetic
pulses are shorter than the precessional period then from
Eq. (4) we infer for the angles stroboscopic evolution from
before [�ðt�Þ, �ðt�Þ] to after [�ðtþÞ, �ðtþÞ] the pulses the
relation (we introduced t� :¼ t0 � ", tþ :¼ t0 þ ")
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(5)

which is valid up to terms of the order ð	=TprecÞ2. After
the pulse, i.e., for t > tþ the dynamics is governed by
Eq. (2) with the initial conditions �f ¼ �ðtþÞ, �f ¼
�ðtþÞ. This procedure is repeated accordingly.

Controlled switching.—As we are interested in switch-
ing we require in the spirit of local control theory that

�ðtþÞ> �ðt�Þ 8 tþ; t�: (6)

As inferred from Eq. (5), this condition is fulfilled if �� ¼
���0 ¼ 3�=2. If a sequence of the pulses (3) each
centered at the times t0;i is applied then SðtÞ evolves as
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(7)

where t�i ¼ t0;i � ".

The realization of this LCT scheme is then as follows:
Starting from a known (e.g., equilibrium) state � ¼ �ð0Þ;
� ¼ �ð0Þ we apply at t ¼ t0;1 the first fields bx and by (3)

with strengths such that �0 ¼ �ð0Þ � 3�=2 (cf. Fig. 1).
Equation (7) delivers the tilt angles �ðtþ1 Þ and �ðtþ1 Þ.
During a time lag (dark time) �1 the propagation proceeds
according to Eq. (2) with the initial values �fð�t0Þ ¼ �ðtþ1 Þ
and �fð�t0Þ ¼ �ðtþ1 Þ. At t ¼ t0;2 we apply a second pulse

with bx and by such that�0 ¼ �fðtþ1 þ �1Þ � 3�=2. From

Eq. (7) we deduce that after the second pulse �ðtþ2 Þ ¼
�fðtþ1 þ �1Þ þ b0fðt0;2Þ

1þ�2 . This procedure is repeated until

we achieve the state with � ¼ �=2. As clear from (7) the
tilt angle is always increased upon the pulse with an
amount that goes linearly with the fields strength b0. On
the other hand, the variation of � with b0 is only logarith-
mic, in fact if the time delay between the pulses is only a
fraction of the precessional period, � is hardly changed.
Freezing.—The scheme allows also for the stabilization

of the magnetization around a desirable �t: At first, starting
from a given state we apply the control scheme and achieve
�t at some time tt. During a field-free period � the angle �t
develops to �fðtt þ �Þ. To compensate for this change we

apply a pulse (centered at t0;t) which shifts the angle to

�þ ¼ �fðtt þ �Þ þ b0fðt0;tÞ
1þ�2 . To stabilize the magnetization

we choose b0 such that �þ ¼ �t. The procedure is then
repeated during the stabilization time. To minimize the
adjustment of b0 between consequent pulses the repetition
rate should be large.
Numerical results and illustrations.—Figure 1 shows the

magnetization reversal according to our zero temperatures
(T ¼ 0) analytical scheme and in the damping regime
appropriate for magnetic nanoparticles. Figure 1 confirms
our analysis and the physical picture drawn above.
However, the following issues need to be clarified for
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FIG. 1 (color online). Evolution of �ðtÞ according to the pro-
posed control scheme and for �ðt ¼ 0Þ ¼ �=180 ¼ �ðt ¼ 0Þ,
�0 ¼ arctanðby=bxÞ ¼ 2�=3, � ¼ 0:05, f ¼ 1, b0 ¼ 0:2. Inset

shows the short-time behavior (pulses are off for � > �=2).
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this procedure to be of practical interest. (i) Do we need a
precise tuning of the pulses durations, (ii) will thermal
fluctuations invalidate our findings, and (iii) how effective
is this scheme when applied to other type of anisotropy
fields. To address these points we implemented a finite-
temperature full numerical realization [31] of the present
control scheme (cf. [1,2], and references therein for an
overview on numerical micromagnetic methods), i.e., the
analytical expressions deliver the appropriate input pa-
rameters for the numerics. The damping parameter is
chosen according to experimental findings [2]. For the
simulation presented here we use square-shaped pulses,
i.e., fðtÞ ¼ 1 for t0 � " < t < t0 þ ". Basically the same
conclusions are valid for other pulse shapes, e.g., Gaussian
pulses [32]. Figure 2 demonstrates the evolution sensitivity
of the angle � when pulses with different durations are
applied. It also shows the range of validity of our scheme.
As inferred from Fig. 2 a fine tuning of the pulse duration is
not mandatory as long as it is smaller that Tprec. The
strength b0 determines the value of the tilt angle [as follows
From Eq. (7)]. The insensitivity to the pulse duration is
favorable for practical applications, however the genera-
tion of magnetic pulses shorter than Tprec might be a chal-
lenge; the light-induced generation of subpicosecond
shaped magnetic pulses [33] may circumvent this problem.
As for the role of the magnetization dynamics during the

pulses our simulations (cf. Fig. 3) confirm qualitatively the
analytical predictions. According to Eq. (7) a minimal
fields strength b0 is required for switching, for b0 deter-
mines �ðtþÞ. To realize the stabilization scheme one tunes
b0 to steer the magnetization to a nonequilibrium �t
(cf. Fig. 3) and keep it there (as long as b0 is on).
Figure 4 proves the robustness of the scheme to thermal

fluctuations. Here we highlight a special feature of the
temperature-dependent magnetization dynamics: To
achieve switching, the pulses have to be applied even if
�t > �=2, since due to thermal excitations the magnetiza-
tion may swing back to the original state. This effect is
avoided by applying the pulses even if � > �=2 (Fig. 4,
lower panel). Generally, we observe that thermal fluctua-
tions have little influence on the effect of the pulses (i.e., on
the dynamics during and right after the pulses), in contrast
to continuous fields [31]. The field-free processional mo-
tion between the pulses is generally modified at T > 0.
The possibility of field-assisted stabilization (freezing)

can be exploited for fast field-assisted thermal switching:
Starting at T � 0 we utilize our scheme to drive the
magnetization to a state �t & �=2 (as shown in Fig. 5)
and then freeze it there. At low temperatures switching
does not occur irrespective of the waiting time (inset of
Fig. 5). When the temperature increases however, the
thermal fluctuations increase but cannot lead to a reversal
in absence of the field, as demonstrated by the inset of
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FIG. 2 (color online). �ðtÞ for different pulse durations (solid
rectangles). Tprec is the precessional period and b0 ¼ 0:3, � ¼
0:05.
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FIG. 4 (color online). Temperature-dependent controlled evo-
lution of the angle �ðtÞ (� ¼ 0:05, b0 ¼ 14:77). The pulses are
applied if � < �=2 only (top panel) or throughout (below).
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FIG. 5 (color online). Thermal-assisted controlled switching in
the presence of short pulses with an amplitude b0 ¼ 8:86. Inset
shows switching is not possible for b0 ¼ 0.
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Fig. 5. The presence of the fields assists a fast magnetiza-
tion reversal, a behavior that cannot be realized with static
fields, since a magnetization freezing is necessary. In prac-
tice, the reversal process may be functionalized as a fast
thermal sensor to monitor swiftly a temperature increase.

The question of to what extent the present scheme is
applicable to another anisotropy type we address by study-
ing the magnetization control of Fe70Pt30-nanoparticles
which possesses cubic anisotropy [27,34]. For a cubic an-
isotropy the field-free ground-state energy landscape con-
tains several minima [35]. By switching we mean then a
magnetization transfer between these minima and not nec-
essarily a change from a parallel to an antiparallel state.
Figure 6 demonstrates the applicability of our control
proposal. Starting from a state close to an energy minimum
the magnetization precesses and relaxes in a field-free
manner to the ground state. When the magnetic pulse is
applied according to our LCT the magnetization is trans-
ferred almost directly to the next energy minimum in the
positive energy semisphere. With the freezing scheme out-
lined above it is even possible to stabilize the magnetiza-
tion on top of the barrier (Fig. 6).

Summary.—A sequence of two perpendicular magnetic
pulses, each with a duration less than the precessional
period is capable of increasing monotonically the magne-
tization tilt angle as to achieve a predefined state within
tens of picoseconds. The method is exploitable for fast
field-assisted thermal switching.
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[25] S. Gräfe, C. Meier, and V. Engel, J. Chem. Phys. 122,
184103 (2005).

[26] C. Antoniak et al., Phys. Rev. Lett. 97, 117201 (2006).
[27] C. Antoniak, J. Lindner, and M. Farle, Europhys. Lett. 70,

250 (2005).
[28] L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153

(1935).
[29] S. V. Vonsovskii, Ferromagnetic Resonance (Pergamon,

Oxford, 1966).
[30] J. L. Garcia-Palacios and F. J. Lazaro, Phys. Rev. B 58,

14 937 (1998).
[31] A. Sukhov and J. Berakdar, J. Phys. Condens. Matter 20,

125226 (2008); for further discussions of temperature
effects see H-J. Suh et al., Phys. Rev. B 78, 064430 (2008).

[32] A. Sukhov and J. Berakdar (to be published).
[33] A. S. Moskalenko, A. Matos-Abiague, and J. Berakdar,

Phys. Rev. B 74, 161303(R) (2006).
[34] Physics of Ferromagnetism, edited by S. Chikazumi

(Oxford University Press, New York, 1997), p. 251.

[35] For the cubic anisotropy fAðSÞ ¼ S2xS
2
y þ S2xS

2
z þ S2yS

2
z .

FIG. 6 (color online). Polar diagram of the energy surface for a
cubic anisotropy with magnetization trajectories. Left panel is a
top view on the energy surface: For b0 ¼ 0 (dark trajectory); for
a b0 ¼ 2:06 control field (light trajectory). Trajectories start at
�ðt ¼ 0Þ ¼ 1:9�, �ðt ¼ 0Þ ¼ �=3:8. Right panel is a bottom
view at the energy surface: freezing field is b0 ¼ 0:59 and the
magnetization is initially at the position marked (X). In both
cases � ¼ 0:05.

PRL 102, 057204 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

6 FEBRUARY 2009

057204-4


