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We report on our studies of interacting electrons in bilayer graphene in a magnetic field. We
demonstrate that the long-range Coulomb interactions between electrons in this material are highly
important and account for the band asymmetry in recent optical magneto-absorption experiments [E. A.
Henriksen et al., Phys. Rev. Lett. 100, 087403 (2008)]. We show that in the unbiased bilayer (where both
layers are at the same electrostatic potential), the interactions can cause mixing of Landau levels in
moderate magnetic fields. For the biased bilayer (when the two layers are at different potentials), we
demonstrate that the interactions are responsible for a change in the total spin of the ground state for half-

filled Landau levels in the valence band.
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Monolayer graphene is a two-dimensional hexagonal
crystal of carbon atoms whose gapless, relativisticlike,
linear low energy dispersion has made it the subject of
intense study since it was first isolated in 2004 [1]. Bilayer
graphene (BLG) [2], the subject of our present study,
consists of a pair of monolayers bound by relatively
weak dimer bonds formed perpendicular to the monolayer
planes. Both the conduction and valence bands have low
energy structure consisting of two quadratic branches sepa-
rated by the energy associated with the dimer bond, vy, and
the lower conduction band and upper valence band are
degenerate at the K points of the Brillouin zone. The
existence of chiral charge carriers with a Berry’s phase of
27 was confirmed by observation of the integer quantum
Hall effect [3] where the low energy Landau level (LL)

spectrum is approximately linear in the field with E, , =
+hwn(n — 1) for n =0 where w, is the cyclotron
frequency, and the spectrum includes a doubly degenerate
LL at zero energy [4]. It has been predicted theoretically
[4-6] and observed experimentally [7,8], that a gap can be
induced in the low energy band structure by breaking the
symmetry between the two layers. Switching of the con-
duction current by sweeping the Fermi energy through the
gapped region has been observed at low temperatures [9],
and this has led to a surge of interest in gapped BLG.
While the single-particle theory of BLG is well known
[2,4-6], it has been shown that the electron-electron inter-
actions are significant in monolayer graphene [10,11]. The
Coulomb interaction (CI) has been studied in the ungapped
bilayer [12], while the biasing potential was considered in
the context of a ferromagnetic transition due to short-range
interactions in the mean-field approximation at zero mag-
netic field [13], and the absence of a contribution to the
intra-LL cyclotron resonance from the electron interac-
tions has been predicted within Hartree-Fock theory [14].
However, the effect of the long-range CI on the ground
state of the biased system in a magnetic field has not been
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investigated, and we address this problem in the current
Letter.

We find that the long-range nature of the CI makes
significant changes to the properties of the low energy
charge carriers for BLG in a magnetic field. The interac-
tions are significantly stronger for electrons in the lowest
LL, and this manifests itself in an observable way by lifting
the degeneracy of the cyclotron resonance transitions at
filling factors *4 [15,16]. It also allows the possibility of
mixing of the LLs which were well separated in energy
when the CIs were not considered. By calculating the
explicit form of the ground state wave function, we show
how this mixing fundamentally changes the nature of the
ground state in the biased bilayer, by inducing a finite spin
polarization for half-filled LLs.

We model BLG as two sheets, each containing two
inequivalent triangular sublattices (labeled A and B) of
carbon atoms. In the Bernal stacking arrangement, the
interlayer bonds consist of dimers formed from atomic
orbitals associated with the A sublattice in one layer and
the B sublattice in the other (see Fig. 1), and the energy
associated with this bond is denoted y; [17]. We allow for a
static electric potential U to be applied between the layers,

FIG. 1. The lattice structure of bilayer graphene. The upper
(lower) lattice is shown by solid (dashed) lines. (a) The top-down
view; (b) the side-on view projected along the axis between the
two arrows in (a).
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so that the upper (lower) layer has potential U/2 ( — U/2).
In a strong magnetic field we can write the tight-binding
Hamiltonian using a four component single valley basis
where ¢ = *1 labels the valley [4] as

%U Og 0 Evpmt
0 — U VpT 0
H - z v LM
0 Evpm 5 Y1
Evpm 0 Y1 %U

where 7 and 7' are the operators corresponding to elec-
tron hops between neighboring atoms (in opposite sublat-
tices in the same layer). The spectrum &§ is found from the
quartic polynomial [6] derived from the Schrodinger equa-
tion associated with the Hamiltonian in Eq. (1), where n €
{0, 1, 2, ...}. Additionally, we denote the band of a particu-
lar LL by placing a “+”" (“‘—"") after the level index for the
conduction (valence) band. The wave functions associated
with the LLs from the two low energy bands are given by

l//;fi = eiky(agi Pn+1s bgi Pn-1» cgi Pns dgi gDn)T’ (2)

where the functions ¢, are the magnetic oscillator func-
tions in the Landau gauge, and the coefficients a, b, ¢, and
d are defined so that the overall wave function is normal-
ized to unity. There are also levels with n = 0 =, which
have wave functions ¥§, = e® (¢, 0,0,0), and & =
e (0, 0,0,0) with e = £8; and &, and & are de-
fined as higher LLs above with the appropriate substitu-
tions for n and &. When U = 0, these four states are
degenerate yielding the eightfold degeneracy (including
the factor of 2 for spin) seen in the integer quantum Hall
effect in BLG [3]. We include the fermionic properties of
the electrons by constructing Slater determinants for the
noninteracting many body basis wave functions.

To include the effects of the long-range CI we consider
the Hamiltonian H coy = 334, el?e—i?,l where the vectors
7; ; label the positions of the electrons, and € = 47e)k is
the dielectric constant of graphene. For graphene mounted
on an SiO, substrate, k = 2.5 [18]. Our analysis is con-
ducted by employing the exact diagonalization scheme
[19] in which we calculate the linear combination of non-
interacting basis states which gives the ground state of the
Hamiltonian H = H , + H ¢,y. This method entails di-
viding the infinite sheet into rectangular cells of dimension
L, X L, [20] and applying periodic boundary conditions to
the wave functions at the edges of each cell. The matrix
elements of the interaction over the single-particle states
are evaluated exactly, and the interaction between the cells
is taken into account by adding the Madelung energy of a
charged lattice [21].

The single-particle states included in the Hilbert space
from which the noninteracting many body basis is con-
structed are as follows. There are four quantum numbers:
The LL index n, the valley £, the spin, and the momentum
k = mm/L,. The values of the momentum are fixed when
the boundary conditions are applied to the cell, and are

labeled by 0 = m =M — 1 with M = L,L,/(27A%). The
LLs selected are governed by the details of the system we
wish to model, and M is set by computational restraints.
Our model includes all interelectron screening effects since
we calculate the exact matrix elements of the full Coulomb
interaction, and it is well known that filled Landau levels
with energy significantly below the Fermi level do not
make additional contributions.

In order to reduce the size of the many body system (and
so improve the calculation speed), we see that the Hamil-
tonian conserves the total momentum u =Y , m; mod M.
Therefore, we can perform a separate diagonalization for
each value of u, and reduce the basis size to approximately
the 1/Mth part. We define S = Y;S; to be the total spin of
the many electron system, and since there is no spin-
dependent term in the Hamiltonian, S, (the projection of
S on the z axis) is a good quantum number. Therefore we
fix §, to its minimum value while still being able to recover
all eigenstates of S? [11], further reducing the many body
basis size.

We consider two cases: First we demonstrate the
strength of the interaction by calculating the shift in the
energy of each LL due to interactions for U =0 (an
unbiased bilayer) and apply the results to recent experi-
mental data. Then we examine the system where the filling
factor is negative, the interlayer potential sizable, and the
magnetic field strong. In this case, we observe changes in
the total spin of the ground state as a function of U and the
magnetic field strength B.

We model the unbiased bilayer near half-filling by tak-
ing a single-particle Hilbert space consisting of the 0+ and
0— LLs with all possible spin and valley states at U = 0.
Each integer value of the filling factor » is simulated by
taking the number of electrons N = (v + 4)M, and we
have M = 3. Table I, part (a) shows the results of diago-
nalizing the resulting many body Hamiltonian and evalu-
ating the energy change from the noninteracting ground
state for integer filling factors. We see that the energy shift
per electron reduces slightly as the LL fills.

In Table I, part (b), we show the energy shift due to the
CI for electrons in higher LLs (i.e., for levels with [n| = 1).

TABLE I. Energy shift per electron due to the Coulomb inter-
action for integer filling factors in the (a) 0= LL and (b) [n| = 1
LLs, for U=0. Energy units are e>/(eAg), the num-
ber of momentum states M = 3, and the magnetic field B = 3 T.

(a) Filling factor -3 -2 -1 0
Energy shift —0.6443 —0.6443 —0.6443 —0.6443
Filling factor 1 2 3 4
Energy shift —0.6316 —0.6222 —0.6148 —0.6085
(b) Landau level n 1+ 2+ 3+ 4+
v, =1 —0.4766 —0.5001 —0.5242 —0.5160
v, =2 —0.4705 —0.4880 —0.5176 —0.5110
v,=3 —0.4645 —0.4759 —0.5111 —0.5061
v, =4 —0.4584 —0.4638 —0.5046 —0.5012
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We have taken a single-particle Hilbert space consisting of
all spin and valley states within one LL. The filling factor
v, within LL 7 can range between 0 (corresponding to an
empty level) and 4 (a filled level), so that v, =4 and
V,+1 = 0 describe the same overall filling factor. The
number of electrons is set by N = v, M, and in order to
allow direct comparison with the lowest LL we restrict
ourselves to M = 3. The energy associated with the inter-
action of electrons is very similar in each of the higher LLs,
and that the interaction energy per particle is slightly
reduced as the LL is filled. We have verified that the results
are identical in the valence band.

Together, Table I, parts (a) and (b), show that the effect
of the long-range ClIs is considerable, and that for this
value of the magnetic field (B = 3 T) the shift in the higher
LLs is only about two-thirds that of the lowest LL. This
difference in the shift will reveal itself in the infrared
absorption spectrum of bilayer graphene, since the energy
of the optical transitions depends entirely on the direct
energy spacing between levels. At U =0 and v = —4,
the lowest energy transition is from the 1— level to the
0= level, while at » = +4 the lowest energy transition is
from 0% to 1 + . Therefore, if the 0% is shifted with
respect to the two |n| = 1 levels, the degeneracy of these
two transitions predicted in the single-particle theory [16]
will be lifted. In Fig. 2 we show the predictions of our
theory in comparison to recent experimental data [15].
Panes (a) and (b) show comparison of the valence band
transitions (i.e., for v = —4) for two values of y; and three
values of vy. The energy of the excited state is calculated
as the sum of the full interacting energy of N — 1 electrons
in the 1— level and one electron in the 0+ level (where we
assume no LL mixing because the magnetic field is strong).
The transition energy is the difference between this and the
energy of N interacting electrons in the 1— level. Pane
(c) shows the comparison of theoretical and experimental
data in both bands for the best values of parameters. The
correspondence to our theory is clear.

In Fig. 3 we show the energy shift and absolute energy of
filled LLs as a function of the magnetic field. The strength
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FIG. 2. Electron-hole asymmetry in the inter-LL optical tran-
sition energy. The experimental data (represented as points) are
taken from Ref. [15], Fig. 2. In (a) and (b), & = v;/(10° ms™!);
in (c) we take y; =0.4¢eV, vp =095X10°ms™!; M =6
throughout.

of the interaction scales with e2/(eAz) * +/B with a
roughly constant coefficient, while the LL spacing goes
as hw, « B, so for lower values of the field, the n = 0%
level crosses the 2— and 1— levels as shown in Fig. 3(b).
The data shown here were calculated with k = 2.5, mod-
eling graphene [18] deposited on an SiO, substrate. For
suspended graphene (where k = 1), it is conceivable that
the effect of the interaction would be even stronger.
Additionally, the effect of the interlayer potential is to
bring together the valence band LLs with low index [6],
so it is plausible that the interactions will cause significant
mixing between these levels.

Now we turn our attention to the system with an inter-
layer potential applied, so that U # 0. With a finite gap
between the 0+ and 0— levels and nonzero filling factor, it
is possible to consider the negatively doped system by
taking only those single-particle states which are in the
valence band. Therefore we select the single-particle states
which form the Slater determinants describing the non-
interacting basis states by taking all spin and valley states
of the 0— and 1— LLs. We have M = 2 and the number of
electrons is related to the filling factor by N = (v + 8)M.
Diagonalizing this system for half-filled LLs (so for » =
—6 and ¥ = —2), and calculating the expectation value of
the total spin operator S? over the resulting ground state as
a function of the magnetic field and the interlayer bias
gives the data shown in the plots in Figs. 4(a) and 4(b). We
have superimposed lines which represent the energy at
which the single-particle energy levels cross, as labeled
in the legend. We have also calculated the expectation of
the total valley quantum number for each of these systems
and find that it is constant with a value equal to 2. This is
expected for half-filled LLs because of the lifting of the
valley degeneracy in the single-particle theory by the
interlayer potential [5,6]. The plots show that there is an
abrupt change in the total spin of the ground state, and a
range of parameters where there is a nonzero polarization
of the spin. This transition is not directly related to the
crossings of the single-particle states, since the position
and slope of the transitions do not match the corresponding

Electrons in filled Landau levels
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FIG. 3. (a) The energy shift per electron of filled LLs. (b) The

absolute energy per electron of filled LLs showing the crossing
between the n = 0% degenerate level and the higher LLs in the
valence band. In both plots U = 0, and M = 5.
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FIG. 4. The total spin of the ground state of the (a) v = —2
and (b) v = —6 systems. M =2 and N = (v + 8)M. The lines
show the crossing points of the single-particle states. The grain-
ing is due to the finite interval between data points. (¢) The
occupancy of the single electron states in the interacting many
body ground state for each region of the plot in (a). The
z projection of the total spin is fixed at zero as described in
the text.

v=-2
N =12

lines superimposed on the plots. This effect is therefore
purely due to the CI, and, in particular, to the exchange
contribution which minimizes the energy of spin-polarized
many body states.

Figure 4(c) shows the occupation of the single-particle
levels in the interacting many body ground state of the v =
—2 system. For simplicity, we display only the LL index
of the states. The actual ground state is a coherent combi-
nation of several noninteracting basis states, where the
combination of LL indices is consistent but different ar-
rangements of momentum and valley states each come
with identical prefactors in the linear combination. In the
lower-right region of the parameter space, the electrons
occupy as many of the 1— states as possible. Moving
toward the upper-left region, the 0— levels become suc-
cessively more populated. The absence of spin polarization
in regions 1 and 3 is caused by the pairing of electrons in
the same valley. In region two, where there are six electrons
per LL, this pairing is incomplete and the spin polarization
finite. The pattern of filling in the two regions of the v =
—6 system is identical.

From an experimental point of view, it is well known
that it is possible to separate the effect of the orbital
magnetization from that due to the spin polarization by
tilting the magnetic field. In the quantum Hall regime,
transitions in the ground state total spin have been observed
by measurement of the magnetoresistance, notably by
spikes associated with the change of state [22], and also
as reentrant behavior as a function of the tilt angle relative
to the magnetic field [23]. These methods may also be
relevant in the case we discuss. Additionally, in the case of

bilayer graphene, the orbital effects can be kept fixed by
keeping B constant and tuning U across the phase transi-
tion (see Fig. 4).

In conclusion, we have shown that the long-range CI
between electrons plays an important role near the Dirac
point in BLG. In the unbiased case, the interactions will
cause a change in the cyclotron resonance energies asso-
ciated with the 0= LL, and LL mixing between the 0=* and
1— levels is induced for moderate magnetic fields. If an
interlayer bias is applied to split the valence and conduc-
tion bands, the electron-electron interactions precipitate a
transition in the total spin of the ground state of half-filled
LLs for certain ranges of parameters. These effects will
have fundamental implications for the design of devices
made from bilayer graphene.
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