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We study the low-temperature transport properties of 1D quantum wires as the confinement strength

Vconf and the carrier density n1D are varied using a combination of split gates and a top gate in

GaAs=AlGaAs heterostructures. At intermediate Vconf and n1D, we observe a jump in conductance to

4e2=h, suggesting a double wire. On further reducing n1D, plateau at 2e2=h returns. Our results show

beginnings of the formation of an electron lattice in an interacting quasi-1D quantum wire. In the presence

of an in-plane magnetic field, mixing of spin-aligned levels of the two wires gives rise to more complex

states.
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The use of modern semiconductor technology has per-
mitted the fabrication of low-dimensional electron sys-
tems, which exhibit quantum transport properties
particular to their dimensionality. In the case of a 1D
electron gas [1,2], the quantization of ballistic resistance
has long been demonstrated in devices with strong con-
finement [3,4], whereas the regime of weak confinement
has largely been overlooked in experimental investigations
of quantum wires. However, it has recently been empha-
sized that interaction can cause a lateral spread of the
electron distribution when the confinement weakens [5].
Here, we report on a behavior of the conductance of
quantum wires with varying carrier concentration and con-
finement, which leads us to suggest a spatial redistribution
of the electron system to form a lattice. In previous work,
we showed that, at sufficiently low carrier concentrations
(but in a strictly 1D regime), the system could enter the
spin-incoherent regime [6]. The devices used for this work
operate at higher carrier concentration, where we observe
interaction-induced bifurcation of the 1D system into two
distinct rows [7].

By strongly confining electrons to one dimension, the
transverse wave functions are spatially quantized in accor-
dance with what is essentially a ‘‘particle in the box’’
model. With little or no electron scattering, for example,
in short quantum wires, transport is ballistic and the con-
ductance accords well with the predictions of noninteract-
ing theory, where each subband contributes a conductance
of 2e2=h. The effects of the electron-electron interactions
on the quantization are small [8], except for the structure at
0:7� 2e2=h [9], and occasionally that at 0:5� 2e2=h [10–
12]. A plateau at 0:5� 2e2=h, attributed to the spin-
incoherent regime, has recently been observed [6]. At
sufficiently low electron densities n1DaB � 1, where aB
is the effective Bohr radius, Coulomb energy dominates
kinetic energy and interactions make possible the forma-
tion of a Wigner lattice [13] in which the electrons localize
at equidistant sites along a line [14,15]. For a line of

electrons, such ordering can occur simply in the absence
of disorder without being accompanied by a change in the
topology of the charge distribution. Experimental observa-
tions of Wigner crystallization are few and far between,
albeit with several notable exceptions [16,17].
The theory of electrons in a quantum wire suggests that,

when the Coulomb repulsion is sufficiently strong to over-
come the confinement potential, the electrons adjust their
positions to minimize energy by initially forming a zigzag
lattice, a configuration first suggested in the context of
electrons on a liquid-helium surface [18]. In this situation,
a variety of phases, including a ferromagnetic state [19],
have been proposed. Both quantum and classical calcula-
tions [20,21] predict that the zigzag will divide as the
electron density increases or confinement weakens further,
leading to the formation of a lattice, initially of two and
then of progressively more rows of electrons, until the
system approaches a regular two-dimensional lattice.
Because quantization of conductance is a fundamental
property of ballistic transport in 1D, the formation of a
spin-polarized system or a transition into rows can be
inferred from the conductance characteristics and their
evolution with changes in confinement potential and car-
rier density.
In order to access these regimes of transport in a quan-

tum wire, independent control over both carrier density and
confinement potential is essential, which we achieve by
electrostatically depleting a two-dimensional electron gas
formed at a GaAs=AlGaAs heterojunction 300 nm deep
(mobility 1:85� 106 cm2=Vs and electron density 1:6�
1011=cm2 at 1.5 K) using a pair of split gates and a top gate
[Fig. 1(b)] separated by an insulating layer of cross-linked
polymethylmethacrylate (PMMA) 200 nm thick [22]. The
gap between the split gates has a length of 0:4 �m and a
width of 0:7 �m, and the top gate spans 1 �m. We mea-
sure the two-terminal differential conductance using an
excitation voltage of 5 �V at 33 Hz in a dilution refrig-
erator with a base temperature of T � 50 mK. By only
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weakly biasing the split gates, we can define a wide quan-
tum wire with a shallow confinement potential, controlling
the carrier density (of the order of 3� 105=cm in the wide
limit) with the continuous top gate. The conductanceG can
be measured as a function of the carrier density while
sweeping the top-gate voltage Vtg at a fixed split-gate

voltage Vsg. The effects described here have been qualita-

tively reproduced in five other similar samples, as well as
in some of a split-gate or midgate geometry.

Figure 1(a) shows a series of conductance traces GðVtgÞ
taken as Vsg is incremented. The confinement potential gets

shallower with each successive trace towards the left,
which corresponds to a widening of the channel. When
the wire is strongly confined (right), the standard ballistic
quantization of conductance is observed with plateaus at
multiples of 2e2=h. As the wire widens, the lower plateaus
weaken and fall below their quantized values. This behav-
ior is most marked for the first plateau at 2e2=h; in the
regime of intermediate confinement, this plateau tends to

e2=h and then vanishes, whereupon the conductance jumps
directly to the 4e2=h plateau as the wire is populated. The
disappearance of 2e2=h plateau is due to neither thermal
averaging nor scattering, for a quantized plateau reappears
at 2e2=h when the confinement potential is weakest (far
left). Upon further widening, the second and third plateaus
(at 4e2=h and 6e2=h, respectively) also weaken and be-
come suppressed.
We also note the presence of 0.7 structure in Fig. 1(a)

across a small range of top-gate voltages: at Vtg � 0 V, the

structure occurs at approximately 0:7� 2e2=h, but inter-
estingly declines to 0:5� 2e2=h at Vtg ��0:5 V, and then

disappears. Application of a parallel magnetic field drives
the 0.7 structure to e2=h, confirming its spin-related origin,
although it is not clear whether this phenomenon is in fact a
manifestation of the ferromagnetic state predicted for a
zigzag chain. However, it is noteworthy that the disappear-
ance of the 0.7 structure coincides precisely with the onset
of the descent in the 2e2=h plateau. A jump in conductance
straight to 4e2=h, without the first plateau, in a manner that
is reproducible and unaffected by channel impurities, in-
dicates that the conventional subband model is not appro-
priate. For normal 1D subbands, the lowest energy state
always corresponds to G ¼ 2e2=h, and there must be an
energy difference between this and the second subband for
which G ¼ 4e2=h; the absence of an energy difference
reflects a breakdown of the noninteracting situation and
the direct formation of two rows. Figure 1(c) shows the
breakdown of quantization in another sample (sample B) of
similar design defined in a different wafer: most of features
discussed for sample A are reproduced, albeit more
weakly; the robustness of the 4e2=h plateau in the region
of breakdown of the first quantized plateau is nonetheless
notable.
Figure 2 shows the evolution of the lowest 1D subbands

in a magnetic field at five different confinement strengths.
Panels 4 and 5 show the expected Zeeman splitting of 1D
subbands, represented by the diverging pairs of transcon-
ductance peaks in the strong-confinement regime. In
panel 4, we observe a crossing of the 1" level with 2 #
level, and of the 2 " with 3 # , when B is approximately 13
and 15 T, respectively. Moving to panel 3, the correspond-
ing crossings occur at 6 and 9.5 T, reflecting a continuous
reduction in the subband spacing as the confinement weak-
ens. This is obvious from their behavior at B ¼ 0 T, where
weakening confinement is accompanied by a reduction in
the separation between the first and second spin-degenerate
subbands, which culminates in their merging into a
fourfold-degenerate ‘‘band’’ in panel 2, which splits into
four branches as B increases.
Figure 3(a) shows the wire characteristics in an in-plane

perpendicular magnetic field B ¼ 7 T. Zeeman splitting
lifts the spin degeneracy, giving rise to additional plateaus
at half-integer multiples of 2e2=h in the higher subbands,
clearly seen in the strong-confinement regime. However,
with weakening confinement, the fall of the 2e2=h plateau

FIG. 1 (color online). (a) Conductance traces of sample A
measured by sweeping the Vtg at various fixed Vsg. Moving right

to left, Vsg is incremented from �2 to �0:52 V in steps of

20 mV, corresponding to a widening of the quantum wire or a
weakening of the confining potential. (b) A schematic diagram
of the device (not to scale) showing the split gates (sg) and top
gate (tg) separated by a dielectric layer (PMMA). (c) Con-
ductance characteristics of a sample B showing the suppression
and disappearance of the plateau at 2e2=h with weakening
confinement. All other measurements described in this Letter
are from sample A.
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now extends to G ¼ 0, resulting in the absence of the first
plateau (e2=h) across a range of Vtg. In Fig. 3(b), taken at

16 T, the descending structure becomes distinctly oscilla-
tory below e2=h. The envelope of the oscillations resem-
bles a beat, the rising-falling-rising pattern of the
conductance for G< e2=h attributable to the two lowest
(spin-parallel) levels, viz., 1 # and 2 # , as they approach one
another with weakening confinement. The onset of this
pattern coincides with the incursion of a plateau beginning
at 2e2=h into the spin-split plateau at e2=h—both plateaus
correspond to spin-down ( # ) levels. The same effect is also
observed, albeit more weakly, at B ¼ 7 T in Fig. 3(a),
where a small oscillation can be seen on the descending
plateau originating at 2e2=h as soon as it crosses below the
plateau at e2=h. We speculate that this effect arises at the
threshold of the electron system bifurcating, when the
single- and double-row formations are very nearly equal
in energy, and switching between these two configurations
produces the beatlike envelope. In zero field, the subbands
are spin degenerate and the structure therefore absent.

Figure 4(a) shows the temperature dependence of a ty-
pical trace with declining 2e2=h plateau seen in Fig. 1(c).
Its conductance is suppressed towards e2=h as the tem-
perature is increased, until it finally disappears at T �
3:5 K due to thermal averaging. Note that, although the
higher plateaus at 4e2=h and 6e2=h similarly weaken with
increasing temperature, their conductance values remain
constant. It is likely that the increase in temperature drives
the system into the spin-incoherent regime [23], which
depends on thermal energy dominating exchange energy.
Nevertheless, the unusual temperature dependence rules

out Coulomb blockade and other disorder effects as the
cause of the suppression of the 2e2=h plateau.
To further test the origin of the oscillatory structure in a

magnetic field, the channel was laterally shifted by differ-
entially biasing the split gates. As seen in Fig. 4(b), the
structure is initially stable and then disappears symmetri-
cally in either direction of shift, the conductance leveling
off at e2=h, which suggests the destruction of row forma-
tion and the return of a single subband as expected for
strong confinement. The symmetry of the traces with re-
spect to bias polarity shows the channel is free of impuri-
ties and other significant imperfections. That disorder is
largely absent therefore explains why ballistic quantization
of conductance can be observed in the double-row con-
figuration without evidence of pinning.
The decline of the 2e2=h plateau towards e2=h with

increasing temperature or decreasing density reflects a
transition into a strongly interacting quasi-1D transport

FIG. 3 (color online). (a) Conductance traces as in Fig. 1(a),
but in an in-plane magnetic field B ¼ 7 T perpendicular to the
transport direction. Well-defined plateaus quantized in multiples
of e2=h are present on the right. The first quantized plateau at
e2=h disappears in the intermediate Vtg regime, coincident with

the suppression of 2e2=h plateau. It should be noted that, were it
a noninteracting single-mode wire, this would not be possible.
The oscillation superimposed on the suppressed plateau can be
shown to be due to a mixing of two spin-aligned rows from the
corresponding gray scale of this plot. (b) A repeat of the
measurement shown in (a), but with B ¼ 16 T. The onset of
the oscillations coincides with the incursion of a descending
plateau coming from 2e2=h, as indicated by the blue arrow.

FIG. 2. Gray-scale plots of transconductance dG=dVtg as a
function of Vtg and B for the last few subbands in sample A.

Each panel corresponds to a given Vsg, and therefore wire width,

which decreases from left to right. Dark and light areas corre-
spond to regions of small and large gradients, respectively, in
dG=dVtg with respect to Vtg. The white lines therefore represent

the risers between conductance plateaus, i.e., subband edges,
while the dark areas represent the plateaus themselves. The
reentrant 2e2=h plateau at far left of Fig. 1(a) is represented as
a thin dark line at Vtg ��1:34 V in the low-field region of

panel 1.
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regime. While zigzag configuration has been theoretically
predicted [20] in this transition, we cannot experimentally
verify the existence of such a spatial distribution of elec-
trons, likely though it may be as a precursor to the for-
mation of rows. Moving to the left [in Fig. 1(a)], as the
channel widens and the density decreases, the chain further
staggers, whereupon the conductance jumps to 4e2=h,
reflecting the formation of two spin-degenerate rows,
each exhibiting ballistic 1D transport. In two dimensions,
a Wigner crystal should be pinned by any disorder [24], on
the basis of which it appears likely that the double-row
formation reported here does not represent a rigid crystal.
The reappearance of 2e2=h plateau at the lowest densities
(far left) most likely represents the return of the normal
single-wire characteristics as the system passes beyond the
conditions favoring the double-row configuration [5].

Previous experimental efforts in one-dimensional trans-
port have largely focused on a 1D electron gas produced by
strong confinement. The flexibility of our devices has made
it possible to explore the opposite limit, that of weak
confinement, in a systematic fashion. By studying the
conductance plateaus in this limit, we have shown the
breakdown of a quasi-1D system of electrons defined by
spatial quantization. The weakening of this quantization
indicates that the interaction has driven the system into a
new configuration of degenerate rows, which may be asso-
ciated with jumps of conductance in multiples of 4e2=h.
We have only discussed the principal features of this new
regime of weakly confined electron gases, of which
double-row formation and the onset and disappearance of
spin polarization are but a part. Further work is required to
fully understand the mechanism of multiple row formation
and other exotic phases predicted in this regime. However,
the formation of a double row and the breakdown of the
subband model of structure is a necessary first step towards
a more complex lattice.

This work was supported by the Engineering and
Physical Sciences Research Council. W.K. H. acknowl-

edges the Cambridge Commonwealth Trust and K. J. T.
the Royal Society. We thank J. Meyer and N. Cooper for
useful discussions.

[1] T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and

G. J. Davies, Phys. Rev. Lett. 56, 1198 (1986).
[2] K. F. Berggren, T. J. Thornton, D. J. Newson, and M.

Pepper, Phys. Rev. Lett. 57, 1769 (1986).
[3] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H.

Ahmed, J. E. F. Frost, D.G. Hasko, D. C. Peacock, D. A.

Ritchie, and G.A. C. Jones, J. Phys. C 21, L209 (1988).
[4] B. J. van Wees, H. van Houten, C.W. J. Beenakker, J. G.

Williamson, L. P. Kouwenhoven, D. van der Marel, and

C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).
[5] J. S. Meyer, K. A. Matveev, and A. I. Larkin, Phys. Rev.

Lett. 98, 126404 (2007).
[6] W.K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D.

Anderson, G.A. C. Jones, and D.A. Ritchie, Phys. Rev.

Lett. 101, 036801 (2008).
[7] We estimate the Coulomb potential energy due to two

neighboring electrons to be EC � 3:5 meV in this work,

significantly greater than the subband energy spacing of

E1D � 0:6 meV, whereas EC � E1D in our previous work.
[8] D. L. Maslov and M. Stone, Phys. Rev. B 52, R5539

(1995).
[9] K. J. Thomas, J. T. Nicholls, M.Y. Simmons, M. Pepper,

D. R. Mace, and D.A. Ritchie, Phys. Rev. Lett. 77, 135
(1996).

[10] R. Crook, J. Prance, K. J. Thomas, S. J. Chorley, I. Farrer,

D. A. Ritchie, M. Pepper, and C.G. Smith, Science 312,
1359 (2006).

[11] D. J. Reilly, G. R. Facer, A. S. Dzurak, B. E. Kane, R. G.

Clark, P. J. Stiles, J. L. O’Brien, N. E. Lumpkin, L. N.

Pfeiffer, and K.W. West, Phys. Rev. B 63, 121311(R)
(2001).

[12] K. J. Thomas, J. T. Nicholls, M. Pepper, W. R. Tribe, M.Y.

Simmons, and D.A. Ritchie, Phys. Rev. B 61, R13 365
(2000).

[13] E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938).
[14] H. J. Schulz, Phys. Rev. Lett. 71, 1864 (1993).
[15] A. D. Klironomos, R. R. Ramazashvili, and K.A. Matveev,

Phys. Rev. B 72, 195343 (2005).
[16] C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795

(1979).
[17] V. V. Deshpande and M. Bockrath, Nature Phys. 4, 314

(2008).
[18] A. V. Chaplik, JETP Lett. 31, 252 (1980).
[19] K. A. Matveev, Phys. Rev. Lett. 92, 106801 (2004).
[20] A. D. Klironomos, J. S. Meyer, T. Hikihara, and K.A.

Matveev, Phys. Rev. B 76, 075302 (2007).
[21] G. Piacente, I. V. Schweigert, J. J. Betouras, and F.M.

Peeters, Phys. Rev. B 69, 045324 (2004).
[22] W.K. Hew, K. J. Thomas, I. Farrer, D. Anderson, D. A.

Ritchie, and M. Pepper, Physica (Amsterdam) 40E, 1645
(2008).

[23] G. A. Fiete, Rev. Mod. Phys. 79, 801 (2007).
[24] R. Chitra, T. Giamarchi, and P. Le Doussal, Phys. Rev. B

65, 035312 (2001).

FIG. 4 (color online). (a) Conductance traces taken at Vsg ¼
�1 V showing the evolution of the declining 2e2=h plateau with
increasing temperature. From left to right, Tlattice ¼ 0:05;
0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:8; 1:0; 1:2; 1:45; 1:95; 2:65; 3:5; 4:5 K.
(Traces have been offset from the 50 mK trace for clarity.) (b) A
single trace from Fig. 3(b) showing the behavior of the oscil-
latory structure as the channel is shifted laterally by differen-
tially biasing the split gates. (Successive traces are offset, the
bold trace corresponding to equal bias on the split gates.)
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