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We study the evolution of metals from Mott insulators in the carrier-doped 2D Hubbard model using a

cluster extension of the dynamical mean-field theory. While the conventional metal is simply charac-

terized by the Fermi surface (pole of the Green function G), interference of the zero surfaces of G with the

pole surfaces becomes crucial in the doped Mott insulators. Mutually interfering pole and zero surfaces

are dramatically transferred over the Mott gap, when lightly doped holes synergetically loosen the

doublon-holon binding. The heart of the Mott physics such as the pseudogap, hole pockets, Fermi arcs, in-

gap states, Lifshitz transitions, and non-Fermi liquids appears as natural consequences of this global

interference in the frequency space.
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Electronic structures of doped Mott insulators have in-
tensively been debated since the discovery of high-Tc

cuprates. While overdoped metals behave like a conven-
tional Fermi liquid, an outstanding issue is how such
metals evolve into a Mott insulator. Experimental studies
on doped cuprates revealed anomalous metallic behavior in
proximity to the Mott insulator. Among them angle-
resolved photoemission spectroscopy (ARPES) found arc-
like spectra around the nodal points of the momenta k ¼
ð� �

2 ;� �
2Þ, with a pseudogap in the antinodal region of the

Brillouin zone [1]. Moreover the high-resolution ARPES
[2] and quantum oscillations of resistivity observed under
magnetic fields [3] proposed the existence of a small closed
Fermi surface, called the pocket, in contrast to the large
surface expected in the normal Fermi liquid. These imply
the emergence of non-Fermi liquids under a radical evolu-
tion of electronic structure upon doping.

Diverse theoretical proposals were made for the Mott
physics of the 2D Hubbard model: The pseudogap was re-
produced in various theories [4,5]. The exact diagonaliza-
tion (ED) studies [6] further found a spectral weight trans-
fer with doping from the upper Hubbard band (UHB) to the
top of the lower Hubbard band (LHB), which created in-
gap states. The arclike spectra were reproduced in the
cluster perturbation theory [7], the dynamical cluster ap-
proximation [8], the cellular dynamical mean-field theory
(CDMFT) [5,9–12], and the composite operator method
(COM) [13]. Hole-pocket Fermi surfaces around the nodal
points were suggested in a phenomenology [14], the
CDMFT [10], the COM [13], and a variational-cluster
approach [15]. A topological change of the Fermi surface,
i.e., Lifshitz transition [16], from electronlike to holelike
surfaces due to a correlation effect was analyzed [13,17]. A
Lifshitz transition to electron pockets was also found upon
electron doping [18]. Despite these achievements, a coher-
ent picture of the Mott physics has not emerged yet.

In general, poles of the single-particle Green function
Gðk; !Þ at the frequency ! ¼ 0 define the Fermi surface.

While ReG changes its sign across a pole through�1, Re
Gmay also change the sign across a zero defined byG ¼ 0.
In the Mott insulator, the self-energy �ðk; !Þ inside the
gap diverges on a specific surface in the k�! space,
which defines a zero surface of G. Since the Fermi surface
disappears in the Mott insulator while the zero surface
appears instead, the evolution of the zeros makes crucial
effects at low doping and is imperative in understanding
the Mott physics [10,14,19].
In this Letter we study the 2D Hubbard model using the

CDMFTþ ED method [10,20], and clarify the doping
evolution of poles and zeros of G in the k�! space. By
figuring out reconstruction of interfering poles and zeros in
a wide ! range, fragmentary features are integrated into a
coherent understanding of the Mott physics. Hole doping
induces a dramatic reduction of doublon-holon binding
energy, which squashes a pile of pole and zero surfaces
into a low-energy region, creating in-gap states. The pseu-
dogap is described by a squashed zero surface which is a
remnant of the Mott gap. The zero surface bends a pole
surface crossing the Fermi level, leaving hole pockets
around (� �

2 , � �
2 ). Fermi arc emerges from this structure

when the neighboring zeros interfere with the spectral
weight of the outer part of the pocket. With further doping,
the Fermi surfaces undergo at least two continuous Lifshitz
transitions before reaching a normal Fermi liquid with an
electronlike Fermi surface.
The Hubbard Hamiltonian on a square lattice reads

H ¼ X

k�

�ðkÞcyk�ck� ��
X

i�

ni� þU
X

i�

ni"ni#; (1)

where ck� ðcyk�Þ destroys (creates) an electron of spin �
with momentum k, and ni� is a spin density operator at site
i. U represents the on site Coulomb repulsion, � the
chemical potential, and �ðkÞ ¼ �2tðcoskx þ coskyÞ �
4t0 coskx cosky, where t ðt0Þ is the (next-) nearest-neighbor
transfer integral.
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In the CDMFT, the infinite lattice of the model (1) is
self-consistently mapped onto an Nc-site cluster embedded
in infinite bath sites, which define an Nc � Nc dynamical
mean-field matrix g0ði!nÞ for the cluster in terms of
Matsubara frequency !n. We employ the Lanczos-ED
method to solve the cluster problem at zero temperature,
where g0 is fitted with a finite number of bath parameters
and a fictitious temperature 1=� is introduced. We adopt 2-
by-2 cluster (Nc ¼ 4) coupled with 8 bath sites and � ¼
100=t unless otherwise mentioned. We obtain, self-
consistently, an Nc � Nc self-energy matrix �cði!nÞ,
whose elements are defined on sites within the cluster.
Then we interpolate cluster quantities in the momentum
space, to obtain the original infinite-lattice ones. To study
poles and zeros of G simultaneously, after careful exami-
nation, we employ the cumulant periodization [10], where
the cluster cumulant Mc � ði!n þ�� �cÞ�1 is interpo-
lated with a Fourier transformation cut by a cluster size Nc,

Mðk; i!nÞ ¼ 1
Nc

PNc

i;j¼1½Mcði!nÞ�ijeik�ðxi�xjÞ. After M is

obtained, G and � on the original lattice are calculated
with G¼½M�1��ðkÞ��1 and � ¼ i!n þ��M�1, re-
spectively. The Lanczos-ED method allows us to calculate
G at real frequencies directly through a continued-fraction
expansion [21], where i!n is replaced by !þ i� with a
small positive factor �. Although we should be careful on
the limitation of the present size of the cluster, this combi-
nation of the methods is appropriate as the state of the art in
exploiting zero and pole structures on equal footing [22].

We start from electronic structure of the Mott insulator
at half filling (� ¼ 0; � is the hole doping rate from half
filling) for t0 ¼ 0 and U=t ¼ 8. While an insulating phase
caused by some symmetry breaking may show a similar
feature, to capture the essence of the Mott physics, we
assume a paramagnetic solution. Figure 1(a) shows the
structure of poles (green surfaces) and zeros (red surfaces)
of G in the k�! space. Here ! is measured from the
highest occupied state [23] to compare with the doped case
below. The zero surface around 0<!< 3t (the most
distinct red surface) represents the Mott gap, which sepa-
rates UHB and LHB displayed by entangled pole and zero
surfaces. The zero surface at the Mott gap touches the pole
surfaces of the UHB (LHB) around (0,0) [(�,�)] at! ’ 3t
(! ’ 0). The distinct pole surface in the UHB persists up to
!� 4t, and another distinct one appears around 5t < !<
7t. These pole surfaces provide large weights for the
density of states (DOS) per spin [Fig. 1(c)]. In other area,
poles are disrupted due to a large imaginary part of �,
making incoherent contributions.

We next dope holes. Comparing the result at � ¼ 0:09 in
Fig. 1(b) with Fig. 1(a), we see that high-energy (j!j * 5t)
structure does not change appreciably while the lower-
energy (j!j & 5t) structure does: The pole surface at the
bottom of UHB �3t in Fig. 1(a) is transferred to the
lowest-energy pole surface in the piles above ! ’ 0:2t,
squashing the zero surface just below it, as in Fig. 1(b)

and also in Figs. 2(a) and 2(b). In addition, one of vague
zero surfaces in the UHB piles in Fig. 1(a) turns to a
distinct one at !� 4t in Fig. 1(b). Correspondingly, the
DOS at ! ’ 3t in Fig. 1(c) is transferred to lower energies
! & 2t as shown in Fig. 1(d).
Let us focus on a low-energy structure. Figures 2(a) and

2(b) provide enlarged views of Fig. 1(b) near the Fermi
level, in two different energy scales. A prominent feature is
a small gap of width �0:2t, described by a zero surface
cutting the Fermi level. It is distinguished from the larger
gap between the doped hole states and the UHB as shown
in DOS in Fig. 1(d). A comparable pseudogap was found in
earlier CDMFT studies [5,10].
As the zero surface around (�, �) extends to the region

!< 0, near the zeros, the pole surface is pushed down
below the Fermi level [Fig. 2(b)]. Meanwhile in the regions
far away from zeros, the energy of poles increases with jkj,
reflecting the original dispersion �ðkÞ. Hence, along the
line from (0,0) to (�, �), for example, the pole energy
initially increases, crossing the Fermi level, and then turns
down around ( �2 ,

�
2 ), crossing the Fermi level again. As a

consequence, a hole pocket is formed around ( �2 ,
�
2 ),

accompanying a zero surface around (�, �), as found
previously in Ref. [10] and also shown in Fig. 2(c).

FIG. 1 (color). The k�! structure of poles (green) and zeros
(red) of G for t0 ¼ 0, U ¼ 8t at (a) � ¼ 0 and (b) 0.09. Occupied
regions for an electron are filled with aqua. The transparency of
pole (zero) surfaces reflects the imaginary part of the (inverse)
self-energy (more transparent for larger imaginary part). (c) and
(d) show DOS per spin at � ¼ 0 and 0.09, respectively.
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The metal-insulator transition occurs when the hole
pockets shrink and vanish, indicating a topological nature
of this transition [24]. Since the quick evolution for � &
0:01 elucidated below suggests a proximity to the first-
order transition, the marginal quantum criticality [24] may
have relevance.

To get further insight into the underlying physics of the
dramatic restructuring, we study the doping evolution of
DOS systematically. We calculate the weight integrated
over energy ranges of 0<!< 2:8t (in-gap weight), W1,
and that over 2:8t<!<1 (UHB weight), W2 [see
Fig. 3(a)]. Figure 3(b) depicts � dependences of W1 and
W2, where W1 (W2) monotonically increases (decreases)
with �. The � dependence of W1 agrees well with �þ nd,
where nd � hni"ni#i is the doublon density. It is natural to

have the weight proportional to � in the rigid-band picture
because it comes from the holes doped into the LHB, but
there is an additional contribution nd. This is interpreted as
a strong-correlation effect as follows. The UHB corre-
sponds to the process where an electron is added onto
singly occupied sites, so that W2 is roughly estimated to
be 1

2 ð1� �� 2ndÞ. Since the weight below the Fermi level

is 1
2 ð1� �Þ, the remaining weight becomes �þ nd, which

corresponds to W1. This simple analysis neglecting dy-
namical fluctuations explains well the overall behavior of
W1 and W2, as seen in Fig. 3(b).

A nontrivial finding, however, is that the weight nd is
quickly transferred from UHB to the top of LHB by tiny
doping � & 0:01. Actually, the above simple analysis
breaks down at tiny �, where W1 eventually and obviously
vanishes as � ! 0. At � ¼ 0 where this weight nd is
included in the UHB weight W2, the same number of

doublons and holons are tightly bound with the binding
energy equal to the Mott gap �3t. Hence one electron
added to a hole site requires dissolution of the bound state
and overcoming the Mott gap. The quick transfer of nd
from W2 to W1 means a quick reduction of the binding
energy from �3t to �0:2t presumably due to an efficient
screening of the doublon-holon interaction by the doped
holes. Even with this screening, the binding energy though
small still survives as the pseudogap. This quick reduction
is promoted by a positive feedback, because the dissolved
bound pairs further join in the screening. This constitutes a
mechanism for the drastic restructuring in the Mott
physics.
The next issue is how the hole-pocket Fermi surface

accompanied by zeros of G in Fig. 2(c) evolves into a
single electronlike Fermi surface expected in the normal
Fermi liquid as � increases further. Figures 2(c)–2(e) de-
pict rðkÞ � Re½G�1ðk; 0Þ� at � ¼ 0:09, 0.11, and 0.14,
respectively, showing how Fermi (zero) surfaces at r ¼ 0
(�1) evolve. As � increases from 0.09, the hole pocket
continues to expand until it touches the Brillouin zone
boundary (jkxj or jkyj ¼ �). Then it changes into two

concentric Fermi surfaces around (�, �) through a
Lifshitz transition, while the zero surface remains around
(�, �) [Fig. 2(d)]. Further doping enlarges the unoccupied
region (blue region) sandwiched by the two concentric
Fermi surfaces. Then, the smaller Fermi surface around
(�, �) merges with the zero surface and they are annihi-
lated in pair, leaving a large holelike Fermi surface, which
almost simultaneously transforms into a normal electron-
like one through another Lifshitz transition [Fig. 2(e)]. For
� � 0:14 only a large electronlike Fermi surface is found.
This evolution at the Fermi level is qualitatively under-
stood from a rigid-band shift of the chemical potential in
the structure of poles and zeros in Fig. 2(b), as drawn with
blue grade levels. Detailed inspection of the two Lifshitz
transitions shows continuities of the electron density as a
function of � and, hence, continuous transitions.
Apparently, the Luttinger sum rule [25] is violated for

� & 0:11, while roughly satisfied for � * 0:14. Since the
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FIG. 3 (color online). (a) DOS at � ¼ 0:09 [the same as
Fig. 1(d)] and the definitions of weights W1 and W2. (b) � de-
pendence of W1 and W2 compared with the weights estimated
from a simple analysis given by dashed lines (see the text). We
set � ¼ 10�2t for these data.

FIG. 2 (color). (a),(b) Close-ups of Fig. 1(b) at two different
energy scales. Blue grade levels in (b) depict rigid-band shifts of
the chemical potential. (c),(d),(e) rðkÞ � Re½G�1ðk; 0Þ� in the
first quadrant of the Brillouin zone for t0 ¼ 0 and U ¼ 8t at � ¼
0:09, 0.11 and 0.14, respectively. r ¼ 0 (�1) defines the Fermi
(zero) surface. We set � ¼ 10�4t for these data.
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sum rule assumes an adiabatic continuity, it does not
necessarily hold beyond the Lifshitz or zero-pole annihi-
lation transitions at �� 0:14. Other calculations also
pointed out the violation at small � [10,17].

Next, we consider the effects of t0. Results for � ¼ 0:09
(not shown) exhibit that t0 < 0 elevates (lowers) the energy
of poles around the nodal (antinodal) points, as expected
from the original dispersion �ðkÞ. The enhancement
around the nodal points stabilizes the hole pocket while
the reduction around antinodal points stabilizes a single
holelike Fermi surface. Quantitative modifications caused
by t0 will be reported elsewhere.

Finally, we discuss how a Fermi arc emerges in the
lightly doped region. Stanescu and Kotliar found that the
zero surface reduces the spectral weight from the neigh-
boring Fermi surface, resulting in a Fermi arc [10]. When
we take the limit of � ! 0þ in the Lanczos method,
however, Im� becomes � functions at zeros of G and has
no contribution at the Fermi surface. In this limit, the
spectral weight shows a closed pocket, not an arc, as
demonstrated in Fig. 4(a) for a sufficiently small �.
However, a larger � might be more realistic in describing
experiments, where various extrinsic factors such as tem-
perature, impurity, and phonon scatterings, and finite reso-
lution of energy are inevitable [26]. A larger � broadens
Im�, which then suppresses the spectral weight close to
the zeros as shown in Fig. 4(b). Thus the Fermi arc is
reproduced by introducing a phenomenological broaden-
ing factor � in the present result. We note that Figs. 4(a)
and 4(b) represent two different types of non-Fermi liquids.

To summarize, we have shown that key elements of the
Mott physics such as in-gap states, hole pocket, Fermi arc,
pseudogap, and Lifshitz transitions result from global re-
constructions and interferences of poles and zeros with
doping to the Mott insulator. The reconstructions are
caused by a drastic relaxation of the doublon-holon bind-
ing at tiny doping. The criticality at � ! 0 and a mecha-
nism of the relaxation, though we have given a qualitative
picture, should further be clarified in the future. It is also
desired to confirm our results in larger-cluster calculations.
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