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Glass-forming liquids display strong fluctuations—dynamical heterogeneities—near their glass tran-

sition. By numerically simulating a binary Weeks-Chandler-Andersen liquid and varying both temperature

and time scale, we investigate the probability distributions of two kinds of local fluctuations in the

nonequilibrium (aging) regime and in the equilibrium regime, and find them to be very similar in the two

regimes and across temperatures. We also observe that, when appropriately rescaled, the integrated

dynamic susceptibility is very weakly dependent on temperature and very similar in both regimes.

DOI: 10.1103/PhysRevLett.102.055704 PACS numbers: 64.70.Q�, 05.40.�a, 61.20.Lc, 61.43.Fs

The study of fluctuations in statistical mechanics has had
a long history, starting from Einstein’s seminal work on
Brownian motion. Recent research on fluctuations has
focused on nonequilibrium problems, such as turbulence
[1], nonequilibrium steady state phenomena [2], single
molecule experiments in biophysics [3], or the relaxation
of large perturbations [4]. In the present Letter, we want to
use glasses as a convenient laboratory to study fluctuations
in both equilibrium and out of equilibrium states, i.e., on
both sides of the (kinetic) glass ‘‘transition.’’

As experimentally observed, the glass transition is not a
sharp thermodynamic phase transition [5], but rather a
dynamical crossover. As the system approaches this cross-
over, the equilibration time �eq gradually increases, until it

eventually becomes longer than the representative labora-
tory time scale tlab [6,7]. Beyond the glass transition, the
system cannot equilibrate in laboratory time scales. This
leads to the emergence of new phenomena, such as physi-
cal aging, i.e., the breakdown of time translation invariance
(TTI). Besides the slowdown of the dynamics, also dy-
namical heterogeneities [7,8], i.e., strong local fluctuations
in the properties of glass-forming liquids, are observed
both in the equilibrium regime [9–11] and in the aging
regime [12–16]. It is not clear, though, to what degree the
properties of those fluctuations depend on whether they are
observed in one or the other regime. In the present Letter,
we address this question in the context of a detailed mo-
lecular dynamics simulation of a simple glass model prob-
ing the aging regime, the equilibrium regime, and the
crossover regime between the two.

A theoretical framework based on the presence of a
Goldstone mode in the aging dynamics [17] that gives
rise to local fluctuations in the age of the sample [18,19]
predicts that probability distributions of local fluctuations
in the aging regime are approximately independent of the
waiting time tw at fixed values of the two-time global
correlation Cglobalðt; twÞ. This prediction, initially pro-

posed for spin glasses [18], has been found to apply also
to off-lattice models of aging structural glasses [15,16]
(where Cglobal is the self part of the intermediate scattering

function: Cglobalðt;twÞ� 1
N

P
N
j¼1 expfiq � ½rjðtÞ�rjðtwÞ�g).

Additionally, it has been found that the dynamic spatial
correlations in an aging structural glass display a simple
scaling behavior as a function of Cglobal [16]. In what

follows, we address the question of whether these same
scaling behaviors extend to the equilibrium regime of an
off-lattice structural glass model.
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FIG. 1 (color online). Top panel: Time scales as functions of
the temperature. ‘‘þ’’ symbols: (temperature, waiting time) pairs
for which we show our results. Triangles: � relaxation times for
T ¼ 0:29; � � � ; 0:40. Full line: fit of �� to �� ¼ aðT � TMCTÞ��.
Dotted line: �eq, estimated as �eq � 10�� (see text). Vertical

dash-dotted line: TMCT. Bottom panel: Probability distribution
�ðCrÞ at T ¼ 0:29, when Cglobalðt; twÞ ¼ 0:1, 0.3, 0.5, for

tw=�� ¼ 0:31, 0.79 (aging) and tw=�� ¼ 11:5, 15.8 (equilib-
rium). The two equilibrium plots overlap perfectly. The coarse
graining region contains on average 6.6 particles.
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In order to observe both equilibrium and aging phe-
nomena, one could either reduce the temperature T of the
thermal reservoir that the system is coupled to beyond the
glass transition temperature Tg at a fixed laboratory time

scale tlab, or reduce tlab until it becomes shorter than �eq, at

fixed reservoir temperature T. Here, we use both ap-
proaches. To observe genuinely glassy dynamics, we
make sure that T is low enough that two-step relaxation
is observed and that time scales are much longer than the
time scale of the first step.

We simulate a 80:20 mixture of A and B particles in 3D
at a number density � ¼ 1:204, interacting via the short-
range, smooth, and purely repulsive Weeks-Chandler-
Andersen (WCA) potential VWCA

�;� [20] (�;� 2 fA; Bg),
with length parameters ��;� and energy parameters ��;�
as in [21,22]. We take kB ¼ 1:0, and the units of length,

energy, and time as �AA, �AA, and �LJ �
ð�2

AAM=48�AAÞ1=2, respectively, where �LJ represents

roughly the time scale for vibrational motion in the system.
The top panel of Fig. 1 illustrates the temperature and

time regimes for which we show results. We define �� by
the condition limtw!1Cðtw þ ��; twÞ ¼ 1=e. Following

[22], we determine the Mode Coupling Theory (MCT)
critical temperature TMCT by fitting �� ¼ ðT � TMCTÞ��.
We find TMCT ¼ 0:263� 0:01 and � ¼ 2:1� 0:7.
Initially, the system is equilibrated at a high temperature:
Ti ¼ 5:0, and then instantaneously quenched to a final
temperature Tf � Ti. We take three different Tf’s. For

Tf ¼ 0:236 � 0:9TMCT, only the aging regime is observed

within our simulation time frame. For Tf ¼ 0:29 �
1:1TMCT and Tf ¼ 0:4 � 1:5TMCT, we observe both the

aging and equilibrium regimes. The time of the quench is
taken as the origin of times t ¼ 0. In our simulations, tlab is
replaced by tw. We find that aging effects are strongest for
tw=�� & 2. For 2 & tw=�� & 10, the aging effects gradu-
ally become weaker with increasing tw until they disappear
for tw=�� � 10. We thus estimate �eq � 10��. We show

results for a 1000 particle system, with 5000, 9000, and
10 000 independent thermal histories when Tf ¼ 0:236,

Tf ¼ 0:29, and Tf ¼ 0:4, respectively.

In order to probe local fluctuations in small regions of
the system, we measure the local coarse grained two-time
correlation function [15] Crðt; twÞ � 1

NðBrÞ
P

rjðtwÞ2Br
cosfq �

½rjðtÞ � rjðtwÞ�g, and the particle displacements

�xjðt; twÞ ¼ xjðtÞ � xjðtwÞ along one direction [10,15,23].

Here, Br is a small coarse graining box around r and
NðBrÞ is the number of particles present at the waiting
time tw in Br. We choose q ¼ 7:2, which corresponds to
the main peak in the structure factor SðqÞ. We also probe
the spatial correlations of the fluctuations, by measuring
the generalized four-point density susceptibility �4 �R
d3rg4ðr; t; twÞ [11,16,24], where g4ðr; t; twÞ is a four-

point (two-time, two-position) correlation function
[11,16].

In the bottom panel of Fig. 1, we show the probability
distributions �ðCrÞ for Cglobalðt; twÞ ¼ 0:1, 0.3, 0.5. We

observe that, for fixed value of Cglobalðt; twÞ, the �ðCrÞ are
approximately invariant between the two regimes. These
results extend those found for the aging regime of a binary
Lennard-Jones (LJ) glass [15].
Figure 2 shows the rescaled probability distributions

�C�ðCrÞ versus the normalized fluctuation ðCr �
CglobalÞ=�C in the one-point two-time correlator, for coarse

graining regions of two sizes, for the temperatures T ¼
0:23, T ¼ 0:29, and T ¼ 0:4. We observe a very good
collapse of the data for different tw and different tempera-
tures for the smaller coarse graining size, and a slightly less
good collapse for the larger coarse graining size. This
suggests that the weak dependence on tw may be due to
the time dependence of the dynamic correlation length
[15]. In [19], it has been argued that the probability distri-
bution of the normalized fluctuations ðCr � CglobalÞ=�C

can be described well by a generalized Gumbel distribution
�Gumbel [1]. Figure 2 shows that fits of our data to �Gumbel

become better for a larger coarse graining region, i.e.,
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FIG. 2 (color online). Rescaled probability distributions
�C�ðCrÞ as functions of the normalized fluctuation ðCr �
CglobalÞ=�C in the two-time correlation, shown at tw=�� ¼
0:79 (aging regime) and tw=�� ¼ 11:5 (equilibrium regime),
for temperatures T ¼ 0:4 (triangles), T ¼ 0:29 (circles), and
T ¼ 0:236 (squares), with Cglobalðt; twÞ ¼ 0:3. Generalized

Gumbel fits to the distributions for T ¼ 0:4 are shown with
thin lines. Top panel: Coarse graining region containing on
average 6.6 particles/box. Bottom panel: Coarse graining region
containing on average 30.5 particles/box.
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when averaging affects have started to modify the distri-
bution [1].

In Fig. 3, we show the probability distribution �ð�xÞ of
the particle displacements, with Cglobalðt; twÞ ¼ 0:5, for

both Tf ¼ 0:29> TMCT (top panel) and Tf ¼ 0:23<

TMCT (bottom panel). We use semilog plots to emphasize
the tails of the distributions. The distributions are very
similar to those determined by confocal microscopy for
an equilibrium sterically stabilized colloidal liquid near its
glass transition [10], and also to the ones found in simula-
tions of an aging binary LJ glass [15]; but markedly differ-
ent from those found by confocal microscopy in an
attracting colloid [23]. For small to moderate values of
�x, the data for different tw and temperatures collapse
very well with each other and with a common Gaussian
fit, as long as Cglobal is constant (not shown). However, for

fixed Cglobalðt; twÞ, the tails of the distribution become

wider for increasing tw. The tails can be fit in the region
j�xj> 0:5 by a nonlinear exponential form �ð�xÞ �
N expð�j�x=aj�Þ, with �� 1 decreasing monotonically
with increased tw [15]. For T > TMCT, both the tails and the
value of � gradually saturate as the system approaches
equilibrium.

To quantify the spatial correlation of dynamical fluctua-
tions, the four-point density susceptibility �4ðt; twÞ
[11,16,24] and similar quantities have been used both in
numerical simulations [11,16,24] and in experiments [25–
28]. The top panel of Fig. 4 shows that at Tf ¼ 0:29,

�4ðt; twÞ as a function of t� tw has a peak whose height
and location grow with tw as long as the system is aging.
This behavior as tw is increased is observed experimentally
in a coarsening foam [25], and analogous to the behavior of
supercooled liquids as the temperature is reduced [26] and
of granular systems as the area fraction is increased [27]. In
the bottom panel of Fig. 4, we test for a possible scaling
behavior with C � Cglobal, by plotting the rescaled quan-

tity �4=�4ðmaxÞ as a function of 1� C, for Tf ¼ 0:23,

0.29, 0.4. An exact collapse would implicate the factor-
ization �4ðt; twÞ ¼ �	

4 ðtwÞ	ðCðt; twÞÞ, where �	
4 ðtwÞ �

�4ðt; twÞjCðt;twÞ¼1=e is a rescaling factor that depends only

on tw until it saturates when the system equilibrates; and
	ðCðt; twÞÞ is a scaling function which depends on times
only through the value of the intermediate scattering func-
tion Cðt; twÞ. We observe that the curves approximately
collapse into two groups, one for T > TMCT and another for
T < TMCT, with a slight horizontal shift between the two
groups. Curves for the same temperature approximately
collapse although a slight systematic variation with tw
remains.

 0.0001

 0.001

 0.01

 0.1

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

ρ(
(∆

x(
t,t

w
))

)

∆ x(t,tw)

C=0.5
T=0.29

tw /τα=0.31
tw /τα=0.79
tw /τα=11.5
tw /τα=15.8

 0.0001

 0.001

 0.01

 0.1

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

ρ(
(∆

x(
t,t

w
))

)

∆ x(t,tw)

C=0.5
T=0.23

tw =102

tw =103

tw =104

FIG. 3 (color online). �ð�xÞ for Cglobalðt; twÞ ¼ 0:5, plotted
with a logarithmic vertical axis to emphasize the tails of the
distributions. Fits to the tails by a nonlinear exponential form are
shown with full lines. Top panel: T ¼ 0:29. tw ¼ 0:31��, 0:79��
are in the aging regime, while tw ¼ 11:5��, 15:8��, which give
perfectly overlapping results, are in the equilibrium regime.
Bottom Panel: T ¼ 0:23. Only the aging regime is accessible;
tw ¼ 102, 103, 104.
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FIG. 4 (color online). Top panel: �4ðt; twÞ as a function of t�
tw for T ¼ 0:29. Bottom panel: �4 divided by its maximum
value �4ðmaxÞ, plotted as a function of 1� C, with C �
Cglobalðt; twÞ for T ¼ 0:4 (triangles), T ¼ 0:29 (circles) and T ¼
0:23 (squares).
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In summary, we have analyzed the probability distribu-
tions of local two-time observables and the spatial corre-
lations of fluctuations in the equilibrium and aging regimes
in a simple glass model. We do find some differences
between the two regimes. For example, the tails of the
probability distributions of one-particle displacements
�ð�xÞ become slightly wider as tw grows at constant
Cglobalðt; twÞ. Also, the rescaled generalized susceptibility

�4=�4ðmaxÞ, when plotted as a function of 1� Cglobal,

shows slight systematic dependencies on tw and on T.
However, those differences are minor, and the similarities
are quite striking. In general terms, the simple scaling
behaviors previously observed in the aging regime
[15,16] extend to the equilibrium regime. On one hand,
both the probability distributions of local two-time corre-
lations and the probability distributions of one-particle
displacements are approximately invariant between the
two regimes as long as the total correlation Cglobalðt; twÞ
is kept constant. On the other hand, the rescaled dynamic
susceptibility �4=�4ðmaxÞ, when plotted against 1�
Cglobalðt; twÞ, is also approximately invariant between the

two regimes. Additionally, we find that the probability
distributions �ðCrÞ of local two-time correlations can be
fitted by generalized Gumbel forms [1,19], as long as the
coarse graining size is relatively large. Finally, the scaling
functions describing the distribution of local two-time
correlations and the dynamic susceptibilities are very
weakly dependent on temperature across the range from
T & TMCT to T > TMCT, and qualitatively similar to those
found in an aging LJ glass [15,16].
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