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It is shown that bifurcation of the mean-field dynamics of a Bose-Einstein condensate can be related to

the quantum phase transition of the original many-body system. As an example we explore the intraband

tunneling in the two-dimensional optical lattice. Such a system allows for easy control by the lattice depth

as well as for macroscopic visualization of the phase transition. The system manifests switching between

two self-trapping states or from a self-trapping state to a superposition of the macroscopically populated

self-trapping states with a steplike variation of the control parameter about the bifurcation point. We have

also observed the magnification of the microscopic difference between the even and odd number of atoms

to a macroscopically distinguishable dynamics of the system.

DOI: 10.1103/PhysRevLett.102.055702 PACS numbers: 64.70.Tg, 03.75.Lm, 03.75.Nt, 67.85.�d

Introduction.—Since the very beginning of quantum
mechanics its relation to classical dynamics constitutes
one of the central questions of the theory. The dependence
of the energy levels distribution on the type of dynamics of
the corresponding classical system [1], in general, and the
quantum system response to variation of the bifurcation
parameters controlling the qualitative changes of the clas-
sical behavior [2] are among the major issues [3]. One of
the main tools in studies of the quantum-classical corre-
spondence is the WKB approximation, where, loosely
speaking, the Planck constant @ is regarded as a small
parameter.

On the other hand, for a N-boson system the limit N !
1 at a constant density, leading to the mean-field approxi-
mation, can also be understood as a semiclassical limit.
This latter approach has received a great deal of attention
during the last decade [4], due its high relevance to the
theory of Bose-Einstein condensates (BECs), many prop-
erties of whose dynamics are remarkably well described
within the framework of the mean-field models [5]. More
recently, it was shown [6,7] that the mean-field description
of a few-mode N-boson system can be recast in a form
similar to the WKB approximation for a discrete
Schrödinger equation [8], emergent for the coefficients of
the wave-function expansion in the associated Fock space,
where 1=N plays the role similar to that of the Planck
constant in the conventional WKB approximation.

The mean-field equations of a system of interacting
bosons are nonlinear; hence, they naturally manifest
many common features of the nonlinear dynamics, includ-
ing bifurcations of the stationary solutions caused by
variation of the system parameters. One of the well-studied
examples is a boson-Josephson junction [9], which can
show either equally populated (symmetric) or strongly
asymmetric states, characterized by population of only

one of the sites (the well-known phenomenon of self-
trapping [10]). Now, exploring parallels between the semi-
classical approach and the mean-field approximation one
can pose the natural question: what changes occur in a
many-body system when a control parameter crosses an
instability (e.g., bifurcation) point of the limiting mean-
field system?
In the present Letter we give a partial answer showing

that one of the possible scenarios is the quantum phase
transition of the second type, associated with the switching
of the wave function in Fock space between the ‘‘coher-
ent’’ and ‘‘Bogoliubov’’ states possessing distinct features.
Considering a flexible (time-dependent) control parameter,
we have also found a strong sensitivity of the system to the
parity of the number of BEC atoms N, showing parity-
dependent structure of the energy levels and the macro-
scopically different dynamics for different parity of N.
Observation of the discussed phenomena is feasible in
the experimental setting available nowadays.
Quantum and mean-field models.—We consider the

nonlinearity-induced intraband tunneling of BEC between
two high-symmetry X points of the same band of a square
optical lattice (OL). The process is described by the two-
mode boson Hamiltonian (see [6] for the details)

Ĥ ¼ 1

2N2
fn21 þ n22 þ�½4n1n2 þ ðby1b2Þ2 þ ðby2b1Þ2�g;

(1)

where bj and b
y
j are the annihilation and creation operators

of the two X states,� (0 � � � 1) is the lattice parameter,
easily controllable by variation of the lattice depth (or
period). The Schrödinger equation for BEC in a state j�i
reads ih@�j�i ¼ Ĥj�i, where h ¼ 2=N and � ¼
ð2g�=@Þt, with g ¼ 4�@2as=m and the atomic density �.
The link with the semiclassical limit is evident for the

PRL 102, 055702 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

6 FEBRUARY 2009

0031-9007=09=102(5)=055702(4) 055702-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.055702


Hamiltonian in the form (1): the Schrödinger equation

written in the Fock basis, jk; N � ki ¼ ðby
1
Þkðby

2
ÞN�kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k!ðN�kÞ!
p j0i, de-

pends only on the relative populations k=N and ðN �
kÞ=N, while h serves as an effective ‘‘Planck constant.’’

Hamiltonian (1) represents a nonlinear version of the
well-known boson-Josephson model (see, e.g., [9,11]),
where unlike in the previously studied models the states
are coupled by the exchange of pairs of atoms. This is a
fairly common situation for systems with four-wave mix-
ing, provided by the two-body interactions involving four
bosons. The exchange of bosons by pairs results in the
coupling of the states with the same parity of the popula-
tion and is reflected in the double degeneracy of all ðN þ
1Þ=2 energy levels for odd N, due to the symmetry relation
2k ! N � 2k (relating different sets of values for odd N).
For even N the energy levels show quasidegeneracy (see
below).

The mean-field limit of Hamiltonian (1) can be formally
obtained by replacing the boson operators bj in (1) by the c

numbers b1 !
ffiffiffiffiffiffiffi
Nx

p
ei�=4 and b2 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð1� xÞp

e�i�=4. We
get [6]

H ¼ xð1� xÞ½2�� 1þ�cos�� þ 1
2; (2)

where x ¼ hn1i=N is the population density and � ¼
arghðby2 Þ2b21i is the relative phase. H possesses two sta-
tionary points corresponding to equally populated X states:
the classical energy maximum P1 ¼ ðx ¼ 1

2 ; � ¼ 0Þ and
minimum P2 ¼ ðx ¼ 1

2 ; � ¼ �Þ. P1 is dynamically stable

in the domain �>�c ¼ 1
3 . For �<�c it looses its

stability, and another set of stationary points x ¼ 1 (S1)
and x ¼ 0 (S2) appears, which is a fairly general situation
in nonlinear boson models. The appearing solutions de-
scribe the symmetry breaking leading to self-trapping.

Energy levels near the critical point.—To describe the
spectrum of Hamiltonian (1) in the vicinity of the critical

value �c we rewrite Ĥ in terms of the operators a1;2 ¼
ðb1 � ib2Þ=

ffiffiffi
2

p
:

Ĥ ¼ Ĥ0 þ
�
1� �

�c

�
V̂þ Eð�Þ; Eð�Þ ¼�þ 1

4
þ �

2N
;

(3)

where Ĥ0 ¼ 2�
N2 a

y
1a1a

y
2a2 and V̂ ¼ 1

4N2 ðay1a2 þ ay2a1Þ2. At
the critical point the energy spectrum is determined by Ĥ0:

Em ¼ 2�c

N2 mðN �mÞ þ Eð�cÞ, where m is the occupation

number corresponding to the operator ay1a1. The spectrum
of Ĥ0 is doubly degenerate (except for the top level for
even N) due to the symmetry m ! N �m. The ground
state energy is Eminð�cÞ ¼ E0 ¼ EN , while the top energy
level hasm ¼ N=2 for even N andm ¼ ðN � 1Þ=2 for odd
N. Restricting ourselves to even number of bosons we get

Emaxð�cÞ ¼ 1
2 þ �c

2N .

Now consider small deviations of� from the bifurcation
point �c. To this end, for a fixed N, one can use the basis

consisting of the degenerate eigenstates of Ĥ0: jEm; ji ¼
ðayj Þmðay3�j

ÞN�mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!ðN�mÞ!

p j0i, j ¼ 1, 2,m ¼ 0; . . . ; N2 . The conditions for

V̂ to be treated as a perturbation depend on m as is seen
from the diagonal matrix elements:

hEm; jjV̂jEm; ji ¼ 1

4N
þ m

2N

�
1�m

N

�
: (4)

At the lower levels (m � N=2) the energy gaps between
the degenerate subspaces and the perturbation both scale as
�E� N�1; hence, the condition of applicability of the
perturbation theory is j���cj � 1 and the lower energy
subspaces acquire simple shifts. At the upper energy levels
(m� N=2) the above energy gaps behave as �E� N�2.

Since hV̂i � 1 in this case, the perturbation theory is ap-
plicable only in a very small interval of � on the order of
N�2. There is a dramatic transition in the energy levels,
e.g., Fig. 1(b) shows the exchange of the double degener-
acy of the top levels for even N in this N�2-small interval
of �. By considering the phase of

hEm; jjðby2b1Þ2jEm; ji ¼ �N2

4
þ N

4
þ 3

2
mðN �mÞ (5)

it is easy to verify that the upper and lower eigenstates
correspond, respectively, to the mean-field stationary
points P1 (� ¼ 0) and P2 (� ¼ �).
Spectrum in the limit N ! 1. Coherent states and self-

trapping states.—For ��1
c ���1 � N�2 the quantum

states corresponding to P1 can be obtained by quantizing
the local classical Hamiltonian (2), i.e., by expanding it
with respect to x� 1=2 and� and setting� ¼ �ih @

@x (see

also Ref. [12]; in this way one loses the term of order 1=N
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FIG. 1. (a) The energy levels of Ĥ for N ¼ 200 and (b) a
detailed picture in the vicinity of �c. The classical energy lines
of the mean-field fixed points P1 and S2 are visibly formed. The
top energy levels for sufficiently large j���cj are quaside-
generate with the interlevel distances indistinguishable on the
scale of the figure (see the discussion in the text below).
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in Emax). The ‘‘wave function’’ c ðxÞ ¼ ffiffiffiffi
N

p
Ck 	ffiffiffiffi

N
p hk; N � kjc i satisfies

�
�h2

8

@2

@x2
þ ð3�� 1Þ

�
1

4
�

�
x� 1

2

�
2
��

c ¼ Ec : (6)

Equation (6) is the negative mass quantum oscillator prob-
lem with the frequency !2 ¼ 8ð3� 1

�Þ. Hence, the de-

scending energy levels read EðN=2Þ�n¼Emaxþ 1
4ð��c

�1Þ�
h�!
4 ðnþ 1

2Þ. The eigenfunctions are localized in the Fock

space, e.g., the n ¼ 0 eigenfunction is c 0ðxÞ ¼
C exp½� !

2h ðx� 1
2Þ2�. In the original discrete variable k ¼

Nx, there are even and odd eigenstates C2k and C2k�1 re-
lated by the approximate symmetry Cl 
 Clþ1; hence, the
energy levels are quasi doubly degenerate [cf. Fig. 1(b)].

The local approximation becomes invalid as ��1
c �

��1 � N�2 (the wave function delocalizes). Two other
stationary points (S1;2) corresponding to x ¼ 1 and x ¼ 0
become stable for �<�c in the mean-field limit. In this
case, however, the phase � is undefined. Let us first con-
sider the full quantum case, for example, when hn1i � N
(point S2). The resulting reduced Hamiltonian can be either
derived in the Fock basis or obtained by formally setting

b2 ¼ N and retaining the lowest-order terms in b1 and by1 :

Ĥ 
 ĤS2 ¼
1

2
þ ð2�� 1Þ

N
by1b1 þ

�

2N
½ðby1 Þ2 þ b21�: (7)

Hamiltonian (7) can be diagonalized by the Bogoliubov

transformation c ¼ coshð�Þb1 � sinhð�Þby1 , where � ¼
�ð�Þ> 0 is determined from tanhð2�Þ ¼ �=ð1� 2�Þ.
We get

Ĥ S2 ¼ � �

N sinhð2�Þ c
ycþ� tanh�

2N
þ 1

2
: (8)

Thus cyc gives the number of negative-energy quasipar-
ticles over the Bogoliubov (squeezed) vacuum solving
cjvaci ¼ 0. In the atom-number basis jvaci is a superpo-

sition of the Fock states with CðvacÞ
2k ¼ tanhkð�Þ�ffiffiffiffiffiffiffiffiffiffiffið2kÞ!p

=ð2kk!ÞC0 and CðvacÞ
2k�1 ¼ 0 (C0 is a normalization

constant).
The validity condition of the approximation (7), given

by hn̂i, �n � N, can be rewritten in the form
tanh�2ð2�Þ � 1þ N�2, what is the same as ��1 �
��1

c � N�2. In this case, the eigenstates of (7) are well-
localized in the atom-number Fock space; i.e., the coeffi-
cients C2k decay fast enough. The condition for this ex-
cludes the same small interval as in the perturbation theory;
hence, the transition between the coherent states and the
self-trapping (Bogoliubov) states occurs on the interval of
� of order of N�2. The convergence of the eigenstates of

ĤS2 to that of the full Hamiltonian (1) turns out to be

remarkably fast as it is shown in Fig. 2(a). In Fig. 2(b)

the dramatic deformation of the top energy eigenstate of Ĥ
(corresponding to the S2-P1 transition) about the critical

�c is shown. Finally, we note that for even N the quasi
double degeneracy of the energy levels for ��1 ���1

c �
N�2 [cf. Fig. 1(b)] is due to equal energy levels of the

Hamiltonians ĤS2 and ĤS1 and the sharp localization of

their eigenstates at the points k ¼ 0 and k ¼ N.
The associated mean-field Hamiltonian for description

of the stationary points S1;2 is defined by replacing the

boson operators in Eq. (1) by c numbers b1 ¼
ffiffiffiffi
N

p
� and

b2 ¼
ffiffiffiffi
N

p
�. For S2, using j�j2 þ j�j2 ¼ 1 and fixing the

irrelevant common phase by setting � real we get the
dynamical variables � and �� and the classical
Hamiltonian in the form H ¼ 1

2 þ 1
2 ð1� j�j2Þ�

f2ð2�� 1Þj�j2 þ�½�2 þ ð��Þ2�g, from which the dy-
namic stability for�<�c of the point S2 (� ¼ 0) follows.
Thus, the passage through the bifurcation point�c of the

two-mode mean-field model, corresponds to the phase
transition in the quantum N-boson system on an interval
of the control parameter scaling as N�2 and reflected in the
deformation of the spectrum and dramatic change of the
system wave-function in the Fock space. The described
change of the system is related to the change of the
symmetry of the atomic distribution, and thus it is the
second order phase transition.
In our case this scenario corresponds to loss of stability

of the self-trapping solutions S1 and S2 and appearance of
the stable stationary point P1. In the quantum description
this happens by a set of avoided crossings of the top energy
levels (and splitting of the quasidegenerate energy levels
for even N) as the parameter � sweeps the small interval
on the order of N�2 about the critical value�c (see Fig. 1).
For lower energy levels the avoided crossings appear along
the two straight lines approximating the classical energies

of the two involved stationary points:H ðP1Þ ¼ 1
2 þ ð3��1Þ

4

(for �<�c) and H ðS1;2Þ ¼ 1
2 (�>�c), see Fig. 1.

Dynamics of the phase transition.—Let us see how the
quantum phase transition shows up in the system dynamics
when � is time dependent. The self-trapping states at S1;2
are eigenstates of Hamiltonian (1) correspond to occupa-
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FIG. 2 (color online). (a) Convergence of the four upper ei-
genstates of the Hamiltonian (1) to the eigenstates of ĤS2 (shown

by dots) for N ¼ 100 (solid lines) and N ¼ 1000 (dashed lines),
for � ¼ �c � 0:1. (b) The contour plot of the state correspond-
ing to the top energy level in the vicinity of �c for N ¼ 200.
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tion of just one of the X points. Such an initial condition
can be experimentally created by switching on a moving
lattice with�<�c (see, e.g., [7]). As the lattice parameter
�ð�Þ passes the critical value from below, the self-trapping
states are replaced by the coherent states with comparable
average occupations of the two X points.

A more rich dynamics is observed when �ð�Þ is a
smooth steplike function between �1 and �2 such that
�1 <�c <�2. In this case, the system dynamics and the
emerging states dramatically depend also on parity of
the number of atoms. For fixed �1;2 the system behav-

ior crucially depends on the time that �ð�Þ spends above
�c. More specifically, one can identify two distinct scenar-
ios, which can be described as a switching dynamics
between the self-trapping states at the two X points,
Figs. 3(a) and 3(b) or a dynamic creation of the super-
position of macroscopically distinct states, well ap-
proximated by the expression

P
k<km

ðCkjk; N � ki þ
CN�kjN � k; kiÞ with a small km=N, Figs. 3(c) and 3(d)
(where km=N 
 0:2). In the macroscopic superposition
case the dynamics shows anomalous dependence on parity
of N, i.e., showing the same behavior for large N of the
same parity but macroscopically distinct behavior for N
and N þ 1, Fig. 3(c). Note that the mean-field dynamics is
close to the quantum one in the switching case, Fig. 3(a),
while it is dramatically different in the superposition case,
Fig. 3(c).

To estimate the physical time scale, t 	 tph� ¼
md2‘?

8�@asN pc
�, we assume that a condensate of 87Rb atoms is

loaded in a square lattice with the mean density ofN pc ¼
20 atoms per cite. If the lattice constant d ¼ 2 �m and the
oscillator length of the tight transverse trap (to assure the
two-dimensional approximation) is ‘? ¼ 0:1 �m, then
tph � 0:2 ms and the time necessary for the creation of

the macroscopic superposition of Figs. 3(c) and 3(d) is
about 20 ms.
Conclusion.—We have shown that behind the mean-field

instability in the intraband tunneling of BEC in a square
optical lattice is a quantum phase transition between
macroscopically distinct states, giving a macroscopic mag-
nification of the microscopic quantum features of the sys-
tem. A spectacular demonstration of this is the dynamic
formation of the superposition of macroscopically distinct
self-trapping states, which, besides being responsible for
the difference between the mean-field and quantum dy-
namics (see also recent Ref. [13]), shows also an anoma-
lous dependence on parity of BEC atoms, reflecting
distinct energy level structure for even and odd number
of atoms.
The work of V. S. S. was supported by the FAPESP of

Brazil.

[1] I. C. Percival, J. Phys. B 6, L229 (1973); M.V. Berry and

M. Tabor, Proc. R. Soc. A 356, 375 (1977).
[2] P. Pechukas, Phys. Rev. Lett. 51, 943 (1983); T. Yukawa,

ibid. 54, 1883 (1985).
[3] See, e.g., K. Nakamura, Quantum Chaos (Cambridge

University Press, Cambridge, England, 1993); F. Haake,

Quantum Signatures of Chaos (Springer-Verlag, Berlin,

Heidelberg, 2001).
[4] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation

(Clarendon Press, Oxford, 2003).
[5] C.W. Gardiner, Phys. Rev. A 56, 1414 (1997); Y. Castin

and R. Dum, ibid. 57, 3008 (1998).
[6] V. S. Shchesnovich and V.V. Konotop, Phys. Rev. A 75,

063628 (2007).
[7] V. S. Shchesnovich and V.V. Konotop, Phys. Rev. A 77,

013614 (2008).
[8] P. A. Braun, Rev. Mod. Phys. 65, 115 (1993).
[9] A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).
[10] V.M. Kenkre and D.K. Campbell, Phys. Rev. B 34, 4959

(1986).
[11] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy,

Phys. Rev. A 59, 620 (1999); R. Gati and M.K.

Oberthaler, J. Phys. B 40, R61 (2007).
[12] V. S. Shchesnovich and M. Trippenbach, Phys. Rev. A 78,

023611 (2008); 78, 023611 (2008).
[13] C. Weiss and N. Teichmann, Phys. Rev. Lett. 100, 140408

(2008).

0 50 100 150 200
0

0.2
0.4
0.6
0.8

1
〈n

1〉/N

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

τ

k/
N

0 50 100 150 200
0

0.2
0.4
0.6
0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

τ

(d)

(a)

(b)

(c)

FIG. 3 (color online). The average population densities
hn1i=N, (a) and (c), and the atom-number probabilities jCkj2,
(b) and (d), for �ð�Þ ¼ �1 þ ð�2 ��1Þ½tanhð�� �1Þ �
tanhð�� �2Þ�=2. The corresponding classical dynamics is shown
by the dash-dot lines in (a) and (c). Here�1 ¼ 0:25<�cr,�2 ¼
0:5>�cr, �1 ¼ 50 and �2 ¼ 85 (a) with N ¼ 500 and 501
(indistinguishable), while in (c) �2 ¼ 135 with N ¼ 500 and
400 (the upper solid and dashed lines) and N ¼ 501 and 401 (the
lower lines). The initial state is jvaci of HS1 , but using jN; 0i
gives a similar picture.
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