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Ab initio calculations in bec iron show that a (111) screw dislocation induces a short-range dilatation
field in addition to the Volterra elastic field. This core field is modeled in anisotropic elastic theory using
force dipoles. The elastic modeling thus better reproduces the atom displacements observed in ab initio
calculations. Including this core field in the computation of the elastic energy allows deriving a core
energy which converges faster with the cell size, thus leading to a result which does not depend on the
geometry of the dislocation array used for the simulation.
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Plastic deformation in crystals is heavily related to the
dislocation core properties [1]. As experimental investiga-
tion of the dislocation core is difficult, atomic simulations
have become a common tool in dislocation theory. But
dislocations induce a long-range elastic field, and one has
to take full account of it in the atomic modeling. This is
even more crucial for ab initio calculations because of the
small size of the unit cell that can be simulated. In this
Letter, we illustrate this point for the screw dislocation in
bce Fe by showing that the commonly used elastic descrip-
tion, i.e., the Volterra solution [1], has to be enriched in
order to get quantitative information from ab initio
calculations.

Two different methods based on ab initio calculations
have been developed to model dislocations. In the first
approach, a single dislocation is introduced in a unit cell
which is periodic only along the dislocation line and with
surfaces in the other directions. Surface atoms are dis-
placed according to the dislocation long-range elastic field
and can be either kept fixed or relaxed using lattice Green
functions [2]. The main drawback of this method is that, in
ab initio calculations, one cannot separate the energy con-
tribution of the dislocation from the surface one. To cal-
culate dislocation energy properties, one has to use the
second approach which is based on full periodic boundary
conditions [3-6]. As this is possible only if the total
Burgers vector of the unit cell is zero, a dislocation dipole
is simulated. Using elasticity theory, one can calculate the
interaction between the two dislocations forming the di-
pole as well as with their periodic images [6], and thus
isolate dislocation intrinsic properties.

We use this dipole approach to study the core properties
of (111) screw dislocations in bcc iron with ab initio
calculations based on density functional theory using the
SIESTA code as described in Ref. [7]. The dislocations are
positioned at the center of gravity of three neighboring
atomic columns. Depending on the sign of the Burgers
vector compared to the helicity of the original site, there
are two different configurations, termed ‘easy” and
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“hard.” The hard core configuration shifts locally the
atoms such that they lie in the same {111} plane. From
steric considerations, one thus expects this configuration to
be less stable. The energy landscape experienced by the
gliding dislocation is dictated by the energy difference
between these two configurations which is a maximum
for the Peierls barrier. It is therefore important to get a
precise knowledge of the corresponding core energies.

We introduce the dipole in periodic unit cells corre-
sponding to different dislocation arrays [7]. The triangular
arrangements of Figs. 1(a) and 1(b) preserve the threefold
symmetry of the bec lattice in the [111] direction. One can
obtain two variants which are related by a 7r/3 rotation. We
refer to them as the twinning (T) [Fig. 1(a)] and the
antitwinning (AT) triangular arrangement [Fig. 1(b)] [8].
The last dislocation arrangement [Fig. 1(c)] is equivalent to
a rectangular array of quadrupoles.

Simulation unit cells are built so that the two disloca-
tions composing the dipole are in the same configuration,
either easy or hard depending on the sign of the Burgers
vector. Assuming that the elastic displacement field created
by each dislocation corresponds to the Volterra one [1], the
elastic energy stored in the simulation box is proportional
to the square of the Burgers vector and therefore is the
same for the easy and hard configurations. The core energy
difference between the two possible configurations is thus
simply given by half the energy difference obtained from
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FIG. 1. Screw dislocation periodic arrangements used for
ab initio calculations: (a) T and (b) AT triangular arrangements,
(¢) quadrupolar arrangement. b = $[111] for easy and §[111]
for hard cores. A is the dipole cut vector.
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FIG. 2. Core energy difference between the easy and hard core
configurations. Solid symbols correspond to core energies ob-
tained when only the Volterra field is considered and open
symbols to core energies when both the Volterra and the core
fields are taken into account (r, = 3 A).

ab initio calculations for the same unit cell. This energy
difference is shown as solid symbols in Fig. 2. The result
depends on the chosen dislocation arrangement. According
to the T triangular arrangement, the hard core configuration
is more stable than the easy one, whereas the quadrupolar
and the AT triangular arrangements lead to the opposite
conclusion. For a given arrangement, the convergence with
the number N of atoms is proportional to N~'/2. The
computational cost to directly deduce converged values
from ab initio calculations is therefore out of reach.

To understand how our simulation approach has to be
enriched to lead to unambiguous dislocation core energies,
we examine the atom displacements created by the dislo-
cation array in ab initio calculations. For all unit cells,
atom displacements in the [111] direction, i.e., the screw
component, correspond to dislocations having a symmet-
rical and compact core structure, in agreement with recent
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ab initio calculations in bce Fe [4,7,9]. The screw disloca-
tion dipoles also create displacements in the (111) plane,
i.e., perpendicular to the screw axis [Fig. 3(a)]. Part of this
edge component arises from elastic anisotropy. Never-
theless, when subtracting the displacements predicted by
anisotropic elasticity for the periodic dislocation array [6]
from the ones given by ab initio calculations, one obtains a
residual displacement [Fig. 3(b)] which looks like a com-
bination of two-dimension expansions centered at the
dislocations.

This is not included in the Volterra solution describing
the dislocation elastic field. Nevertheless, going back to the
seminal paper of Eshelby er al. [10], it appears that a
dislocation can also lead to such a supplementary elastic
field. Indeed, Eshelby ef al. showed that a straight disloca-
tion in an infinite elastic medium creates in a point defined
by its cylindrical coordinates » and 6 a displacement given
by a Laurent series whose leading terms are

u(r, 0) = vin(r) + iy(6) + u1(6) + O< ) €]

Usually, only the two first terms of this series are consid-
ered leading to the well-known Volterra solution [11]. This
gives the long-range displacement induced by the disconti-
nuity along the dislocation cut.

Close to the dislocation core, the third term in Eq. (1)
may be relevant too [12,13]. This corresponds to what is
usually called the dislocation core field. Such a field arises
from nonlinearities in the crystal elastic behavior and from
perturbations due to the atomic nature of the core. It can be
modeled within anisotropic linear elasticity theory using
line-force dipoles representative of an elliptical line source
expansion located close to the dislocation core [14]. The
core field is then characterized by the first moments M;; of
this line-force distribution. We propose in the followmg an
original approach that allows us to directly deduce the
moments M;; from quantities that can be “measured” in
atomic simulations.
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FIG. 3. Planar displacement map of a periodic unit cell containing a screw dislocation dipole obtained from ab initio calculations:
(a) total displacement, (b) after subtraction of the Volterra elastic field, and (c) after subtraction of the Volterra and the core elastlc
fields. Vectors correspond to (111) in-plane displacements and have been magnified by a factor 50. Displacements smaller than 0.01 A
are omitted. For clarity, displacements of the six atoms belonging to the cores of the two dislocations are not shown in (c). Atomic
positions are drawn as circles with a color depending of their original (111) plane.
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In that purpose, we consider the elastic energy of a
periodic unit cell containing a dislocation dipole defined

by its Burgers vector b and its cut vector A. Each disloca-
tion also creates a core field corresponding to the moments
given by the second-rank tensor M. An homogeneous
strain &;; can be superposed to the heterogeneous strain
created by the dislocation dipole. This contributes to the
elastic energy by an amount [15]

1
E, = h(ESCijklsijSkl + CijubiAjen — 2Mij8ij)’ 2
where S is the area of the simulation unit cell perpendicular
to the dislocation lines, & the corresponding height, and
Ciji the elastic constants. The homogeneous stress is

defined as
Oij = 7. Cijkl(skl - s‘,i,), 3)

with the stress-free strain

biAj + bjA, M
e B T . €))

ey, = 3

i 28
where the elastic compliances S, are the inverse of the
elastic constants.

When the dislocations do not create any core field (M =
0), one recovers the fact that the elastic energy is minimal
for an homogeneous strain equal to the plastic strain pro-
duced when the dislocation dipole is introduced in the
simulation unit cell [6]. The core fields induce a second
contribution which is proportional to the dislocation den-
sity, thus allowing us to define a dislocation formation
volume. Our ab initio calculations lead for a screw dis-
location in bcc iron to a dilatation perpendicular to the
dislocation line, 6V, = (¥, + £3,)5/2 = 3.8 = 0.3 A2,
and to a contraction along the dislocation line, 6V =
8(3)35 /2 = —1.3+0.2 A2, where the formation volumes
are defined per unit of dislocation line.

Instead of letting the unit cell relax its size and shape,
one can also keep fixed the periodicity vectors and mini-
mize the energy only with respect to the atomic positions.
The simulation box is thus subject to an homogeneous
stress from which the moments responsible for the dislo-
cation core field can be deduced using Eqgs. (3) and (4). The
component o33 of the “measured’”” homogeneous stress is
negligible compared to 0| and 0,5, in agreement with the
following argument.

For a[111] screw dislocation in a cubic crystal, because
of the threefold symmetry, the tensor M is diagonal with
M|, = My, and M3; = 0 if the unit vector é; corresponds
to the [111] direction. The core field is thus a pure dilata-
tion in the (111) plane. This is true when the dislocation is
in a stress-free state or if the stress experienced by the
dislocation also obeys this threefold symmetry. The
ab initio calculations indeed lead to such a tensor M for

the two triangular arrangements. The quadrupolar arrange-
ment induces a stress which does not obey this symmetry.
Because of the moment polarizability [16], we obtain
different values for M;; and M,, in this case.
Nevertheless, all dislocation arrangements used in
ab initio calculations converge with the cell size to M; =
My, = 650 + 50 GPa - A? for both easy and hard core
configurations. As for the contraction observed along the
dislocation line, it arises from the elastic compliance S33
which couples the strain component &3;3 with the force
moments M, and M,,.

Knowing the moments, we model the dislocation elas-
tic displacement as the superposition of the Volterra and
the core fields. We can thus compare the displacement
given by ab initio calculations with the one predicted by
elasticity theory for the dislocation periodic array [6].
Looking at the difference between the fields given by the
two modeling techniques for the in-plane (111) component
[Fig. 3(c)], one sees that elasticity theory perfectly man-
ages to reproduce the displacement given by ab initio
calculations, except for atoms which are too close to the
dislocation cores. It is clear that the superposition of the
core field to the Volterra solution greatly improves the
description of the dislocation elastic field.

The excess energy E, i.e., the energy difference per unit
of height between the unit cell with and without the dis-
location dipole, is the sum of the two dislocation core
energies £ and of the elastic energy:

1
E = 2E°°° + E‘0 - blK?]bJ ln(rc) + Ml']'Kinklelﬁ’ (5)

where K and K? are definite positive tensors which only
depend on the elastic constants. E° contains the elastic
interaction between the two dislocations composing the
primary dipole, as well as the interaction with their peri-
odic images. The core fields modify this interaction energy
as the dislocations now interact not only through their
Volterra elastic fields but also through their core fields
and the combination of these two elastic fields. The last
term in Eq. (5) corresponds to the increase of the disloca-
tion self-elastic energy due to their core fields. The cutoff
distance r, is introduced because elastic fields are diverg-
ing due to elasticity inability to describe atom displace-
ments in the dislocation core. The core energy that can be
deduced from atomic simulations therefore depends on the
value of r,.

We use Eq. (5) to extract dislocation core energy from
atomic simulations: E and M are deduced from ab initio
calculations, whereas E°, K°, and K? are calculated with
anisotropic elasticity theory. A core radius slightly larger
than the Burgers vector (r. =3 A) leads to reasonable
core energies and a good convergence with the size of
the simulation unit cell. The core energy difference be-
tween the easy and the hard core configurations of the
screw dislocation in bece iron converges now rapidly to a
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FIG. 4. Sketch of the (111) in-plane displacement created by
the triangular arrangement of dislocations in their easy core
configuration. For the T variant (a), the displacements due to
the Volterra and the core fields have the same sign and sum up in
the region between two neighboring dislocations, whereas they
partially cancel for the AT variant (b).

value which does not depend on the geometry of the
dislocation arrangement (Fig. 2). For all simulations, the
easy core configuration is more stable than the hard one,
with a core energy converging, respectively, to EGS =
219 = 1 meV - A"l and ES9S =227 = 1 meV - AL,

We can now understand why the simple approach, where
only the Volterra elastic field is considered, leads to core
energies which strongly depend on the geometry of the
dislocation array. Looking at the (111) in-plane displace-
ment created by each component of the dislocation elastic
field, the Volterra part oscillates as a function of 6 between
a compression and a tension type, whereas the core field
only leads to a compression. This is illustrated in Fig. 4 for
the two variants of the triangular arrangement with the
dislocations in their easy core configuration. It is clear in
this figure that the effects of the Volterra and the core fields
will sum up in the regions between two neighboring dis-
locations for the T variant [Fig. 4(a)], whereas they will
partially compensate for the AT variant [Fig. 4(b)]. One
thus expects a stronger elastic interaction between dislo-
cations for the T variant than for the AT one. This is the
opposite for the hard core configuration, as changing the
sign of the Burgers vector reverses the Volterra elastic field
without modifying the core field. When neglecting the
dislocation core field, one thus overestimates the elastic
energy difference between the easy and hard core configu-
rations for the T variant and underestimates it for the AT
one. On the other hand, the coupling of the Volterra and the
core elastic field leads to a negligible interaction between
neighboring dislocations for the quadrupolar arrangement
because of its centrosymmetry. This arrangement actually
appears as the best-suited one to extract quantitative infor-
mation from atomic simulations [6].

This dilatation due to the dislocation core field is not
specific to iron. When analyzing previous ab initio calcu-
lations [3,4] we can conclude that screw dislocations ex-
hibit a similar core field in other bcc metals like Mo and Ta.
On the other hand, empirical potentials may fail to predict

such a core dilatation. This is the case for the Mendelev
potential [17], which is often used to study dislocations in
iron [9,18,19].

In addition to determining the formation volume of the
screw dislocation in iron and modeling it within aniso-
tropic linear elasticity theory, our study shows that consid-
ering this core field is crucial when deriving from atomic
simulations dislocation parameters like their core energy.
This supplementary elastic field should also influence any
energy differences, like the Peierls barriers, and stresses
extracted from atomic simulations. Moreover, because of
the formation volume associated with this core field, a
dislocation can interact with a hydrostatic stress. Close to
the core, it will modify the dislocation interaction with
point defects [19].
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