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We experimentally probe the properties of the disordered Bose-Hubbard model using an atomic Bose-

Einstein condensate trapped in a 3D disordered optical lattice. Controllable disorder is introduced using a

fine-grained optical speckle field with features comparable in size to the lattice spacing along every lattice

direction. A precision measurement of the disordering potential is used to compute the single-particle

parameters of the system. To constrain theories of the disordered Bose Hubbard model, we have measured

the change in condensate fraction as a function of disorder strength for several different ratios of tunneling

to interaction energy. We observe disorder-induced, reversible suppression of condensate fraction for

superfluid and coexisting superfluid–Mott-insulator phases.
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Disorder is intimately involved in such spectacular ef-
fects as the fractional quantum Hall effect and vortex
pinning in type-II superconductors. Understanding the
role of disorder is therefore of fundamental interest to
materials research and condensed matter physics.
Universal behavior, such as Anderson localization [1], in
disordered noninteracting systems is well understood.
However, the effects of disorder combined with strong
interactions remains an outstanding challenge to theory.
In this work, we study a paradigm for disordered, strongly
correlated bosonic systems: the disordered Bose-Hubbard
(DBH) model. Despite being applied to many physical
systems—from superfluids in porous media to supercon-
ducting thin films—questions remain regarding fundamen-
tal properties of the DBH model. For example, theoretical
work using mean field theory [2–7], renormalization group
[8], replica theory [9], and quantum Monte Carlo algo-
rithms [10–15] disagree on the nature of the ground state
phase diagram.

While ultracold atom gases are ideal for studying dis-
order [16], having recently been applied to explore
Anderson localization [17,18] and quasicrystalline 1D sys-
tems [19,20], the regime of strong interactions and disorder
has not been previously accessed. To experimentally real-
ize the DBH model, we add fine-grained disorder to an
optical lattice potential using an optical speckle field with
features as small as 570 nm. A unique aspect of this system
compared with solid state materials is that the disorder
strength is continuously tunable by controlling the inten-
sity of the speckle field.

We prepare 87Rb BECs containing ð3:2� 0:6Þ � 105

atoms in a 3D cubic optical lattice potential with 406 nm
between sites, as described in Ref. [21]. The lattice poten-
tial is characterized using a dimensionless parameter s,
where the lattice potential depth is sER (ER is the recoil
energy at 812 nm). A nearly isotropic harmonic confining
potential generated by a magnetic trap and the Gaussian
lattice beam profile leads to a range of site fillings, with

approximately three atoms per site in the center of the
lattice.
Fine-grained disorder is superimposed on the periodic

optical lattice potential by passing 532 nm light through a
holographic diffuser to generate an optical speckle field
[Fig. 1(a)]. The diffuser randomly scatters the light through
a 0.5� range of angles, leading to a random distribution of

FIG. 1 (color). Fine-grained disorder superimposed on a 3D
periodic optical lattice potential. (a) A polycarbonate holo-
graphic diffuser (gray disk) is used to create a 532 nm optical
speckle field. The light (green) is focused by a 0.9 numerical
aperture lens 13 mm from the atoms into the rectangular glass
cell, where a BEC (blue circle) is confined in a three-
dimensional optical lattice formed from three pairs of counter-
propagating 812 nm laser beams (red). (b) The random optical
potential (green) created by the optical speckle field adds inde-
pendently to the lattice potential (red) to create a disordered
potential. (c) A sample of the volume of the speckle intensity
distribution (shown in false color). (d) The measured speckle
intensity is used to reconstruct the AC function (false color). The
1=e2 radii of the AC distribution are 570 nm and 3 �m along the
transverse and speckle propagation directions; the lattice axes
project onto the x and z directions in this plane.
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intensities around the focal plane covering a Gaussian
envelope with a 160 �m 1=e2 radius. Atoms experience
a potential energy shift proportional to the intensity of this
light, leading to a combined potential that is a disordered
lattice potential [Fig. 1(b)]. The average potential energy
shift � from the speckle field is used to quantify the
disorder strength. The dipole force on a 500 nK thermal
gas from the speckle-beam envelope is used to calibrate �
within a 15% systematic uncertainty.

Several previous studies, beginning with Ref. [22], have
used speckle to experimentally investigate atoms confined
in disordered potentials [17,18,23–25]. Our results are
distinguished from prior disordered optical lattice experi-
ments probing the interplay of disorder and strong inter-
actions by the use of fine-grained disorder comparable in
length scale to the lattice spacing, which results in weak
correlations in the single-particle properties at neighboring
lattice sites (typically assumed in theories of the DBH
model). In [26], the disorder length scale was nearly an
order of magnitude larger than the lattice spacing, giving
rise to strong correlations in the disordering potential at
nearby sites. Incommensurate lattices were used to create a
quasicrystalline system and probe the interacting Aubry-
André Hamiltonian in [19]. These quasiperiodic potentials
show perfect correlations in measures such as the joint-
probability distribution of the disorder-induced energy
shift for nearest-neighbor lattice sites.

We achieve the fine-grained disorder limit by using rela-
tively short-wavelength light, a high numerical aperture
lens, and a geometry in which the speckle field propagates
at 30� and 45� angles to the lattice directions [Fig. 1(a)].
The speckle length scale is characterized using the inten-
sity autocorrelation (AC) function, which was determined
by a measurement of the speckle intensity in a 10� 100�
80 �m volume using a scanning, high-resolution optical
microscope [Fig. 1(c)]. A fit to the measured AC distribu-
tion [Fig. 1(d)] to a Gaussian gives 790 and 650 nm 1=e2

radii, less than two lattice spacings, along the lattice direc-
tions. The shift in energy at nearest-neighbor lattice sites is
therefore weakly correlated.

At sufficiently low temperature and high s, atoms in a
disordered lattice are described by the DBH Hamiltonian
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with site (kinetic and potential) energies "i, tunneling
energies between nearest neighbors tij, on-site interaction

energies Ui, and effective chemical potential ~�i ¼ ��
kr2i =2 (� is the chemical potential, k is the spring constant
for the parabolic confining potential, and ri is the distance
to the center of the lattice). The disordering potential gives
rise to site-dependent distributions for the DBH model
parameters ", t, and U. The site energies are disordered
by potential energy shifts, the tunneling energy by changes

in the potential barrier between sites, and the interaction
energy by modification of the curvature of the potential
near the center of each lattice site. We define the tunneling
and interaction energies as in Ref. [27], although localized
basis functions for each site must be used for the single-
particle wave functions in the disordered potential.
In typical theoretical treatments of the DBH model, the

disorder is limited to either the site or tunneling energies,
which are generally assumed to be uniformly or Gaussian
distributed. However, for our system, the statistical prop-
erties of the microscopic disorder are completely deter-
mined. We numerically compute the distributions for ", t,
and U by calculating the local basis functions on a 3D
disordered lattice potential that reproduces the geometry
shown in Fig. 1(a); the parabolic confining potential is not
included in this calculation. The basis set of single-particle
states wið ~x� ~xiÞ is constructed using imaginary time pro-
jection starting from states localized on the sites of the

uniform lattice potential: wið ~rÞ ¼ h~rj expð��½�@
2 ~r2

=
2mþ Vð ~rÞ�Þj~rii, where V is the disordered potential. The
evolution is terminated when the high energy components
are sufficiently suppressed but the basis functions are still
well localized. The basis set is then orthogonalized using
the Lowdin scheme in order to preserve the localization to

the maximal extent [28]. The distributions of "i ¼R
w�

i ð ~x� ~xiÞ½�@
2 ~r2

=2mþ Vð ~rÞ�wið ~x� ~xiÞd3 ~x, tij, and

Ui are calculated using this basis set, averaged over 150
random realizations of the speckle field [29].
Computed probabilities for the DBH parameters are

shown in Fig. 2. These distributions show that the speckle
induces the strongest disorder in t and " compared with
U—the relative scales of the disorder in each parameter are
determined by the width of the distributions compared with
their mean. We have verified that the width �" of the site
energy distribution is proportional to �, as expected from

FIG. 2 (color). Probability density � of the DBH parameters
for s ¼ 14 and � ¼ 1. The distribution for " shown in (a) is one-
sided, since the blue-detuned speckle potential can only increase
the potential energy of a lattice site. In (b), the tunneling energy
distributions are computed separately along the x (blue) and z
(green) directions. The average of the ratio of tunneling energy
along the x and z direction does not deviate by more than 10%
even for moderately strong disorder (��U). The disorder does
not shift the most probable values of t and U, even though the
mean values of these parameters change with increasing �. The
� ¼ 0 values are " ¼ �10:85ER, t ¼ 0:0095ER, and U ¼
0:360ER.
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the distribution of speckle intensities PðIÞ / e�I= �I ( �I is the
mean intensity and � / �I). The similarity of the t distri-
butions shown separately along the x and z directions in
Fig. 2(b) confirms that the asymmetry of the speckle field
with respect to the lattice directions does not play an
important role in the distribution of tunneling energies.

In this Letter, we measure the effect of disorder on
condensate fraction, which provides indirect information
on the outstanding question of how the SF andMI phases in
the uniform lattice transform when disorder is added. In
their seminal paper on the DBH model [2], Fisher et al.
argue that a Bose-glass (BG) phase intervenes between the
MI and SF phases, implying that disorder transforms the
MI phase into a BG phase. However, recent results using,
for example, stochastic mean field [3] and replica theory
[9] indicate that disorder can change the MI phase directly
into a SF. We do not resolve this issue directly because
condensate fraction is related, but not identical, to SF
fraction. Only a portion of atoms are condensed because
of the strong interactions in the DBH model; the conden-
sate fraction is strictly zero for the MI phase and suffi-
ciently localized BG phases.

Time-of-flight absorption imaging after release from the
disordered lattice is used to measure the fraction of atoms
in the condensate. The images are fit to the sum of a
Thomas-Fermi (TF) profile (for a harmonic trap) and a
broader Gaussian; we refer to these as the condensate and
noncondensate components, numbering N0 and Nnc, re-
spectively. The noncondensate component may be atoms
in MI or BG phases, or atoms in thermally excited states.
The condensate component may be atoms in a SF phase, or
a BG phase with a long coherence length (i.e., nearly equal
to the diameter of the gas); a condensate measured in this
fashion does not imply complete coherence across the
entire gas. A sample image and corresponding cross-
sectional profile are shown as insets to Fig. 3(c). We
observe two-component profiles for all lattice depths s
and disorder strengths � used in this work, and the width
of the TF profile changes by less than 20% for the range of
� in Fig. 3.

The measured condensate fraction N0=N ¼ N0=ðN0 þ
NncÞ is shown in Figs. 3(a)–3(c) for s ¼ 6, 12, and 14, three
lattice depths that span different regimes for the pure Bose-
Hubbard (BH) phase diagram. At zero temperature, the
BH model with a parabolic confining potential predicts a
SF phase with negligible quantum depletion at s ¼ 6, a
strongly depleted SF phase at s ¼ 12, and coexisting MI
and depleted SF phases (as nested spherical SF and unit
filling MI shells surrounding a SF core) at s ¼ 14 [27,30].
For the data in Fig. 3, the condensate fraction before
transfer into the disordered lattice is greater than 90%.
Data are shown for slow (15 ms) release from the lattice,
which is used to measure the degree to which transfer into
the disordered lattice is reversible, and fast (200 �s) re-
lease (or ‘‘band-mapping’’), which probes N0=N in the

disordered lattice [31]. The ratio s=� is kept fixed both
during the turn on and release from the disordered lattice.
For slow release, the measured condensate fraction does
not depend strongly on the release time, and longer release
times do not give higher condensate fraction. Ideally, in the
absence of heating during transfer into the disordered
lattice, slow release would recover the condensate fraction
prior to transfer.
We observe that disorder leads to partially reversible

changes in condensate fraction. We interpret the irrevers-
ible decrease in N0=N measured for sufficiently large � as
an increase in heating during transfer into the disordered
lattice. This heating is never so strong that the condensate
is destroyed; the lowest measured condensate fraction for
slow release is 0.34 at s ¼ 12 and maximum �. We were
not able to determine the source of this heating, which may
result from vibration of the speckle field relative to the
lattice potential or long adiabatic time scales related to the
disappearance of the band gap for strong disorder. A
calculation of the density of states using the basis set
constructed on the disordered lattice indicates that the
gap between the ground and first excited band disappears
for approximately � ¼ 0:8, 1, and 1:75ER (corresponding
to �=U ¼ 4:7, 3.3, and 5) for s ¼ 6, 12, and 14.
The significant reversible changes in N0=N evident in

the fast release data in Fig. 3 may be caused by adiabatic
transformations between phases induced by the disorder
and by quantum depletion induced by interactions between
atoms. Quantum depletion in the pure lattice at zero tem-
perature is anticipated to be significant for s ¼ 12 and 14;
site-decoupled mean field theory predicts N0=N ¼ 0:97,
0.64, and 0.36 at s ¼ 6, 12, and 14 for our system (the ratio
of atoms in the SF to MI phase is 0.83 at s ¼ 14)[32].

FIG. 3 (color). Measured condensate fraction N0=N in the
disordered lattice potential. Data are shown for s ¼ ðaÞ 6,
(b) 12, and (c) 14. The disorder strength normalized to U
corresponds to � ¼ 0–7ER for (a) and (b) and � ¼ 0–6ER for
(c). The hollow (solid) points are the condensate fraction after
slow (fast) release from the lattice. Each data point is the average
of more than six measurements at fixed � and s; the error bars
show the statistical uncertainty. The inset to (c) is an image with
a 400 �m field-of-view at s ¼ 14 and � ¼ 2ER (�=U ¼ 5:7).
The cross-sectional profile of this image shows the fit to a two-
component distribution (solid line) used to determine N0=N. We
used an empirical imaging noise model to determine that the
systematic error in measurements of low N0=N was less than
0.03.
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Because the disorder does not significantly affect the in-
teraction energy (and therefore is not likely to impact
quantum depletion), the systematic reduction of N0=N as
� is increased for the fast release may be an indication that
disorder is inducing a transformation between quantum
phases.

To isolate the effect of the disordered lattice on conden-
sate fraction from changes caused by heating, we define the
reversible fractional change in N0=N as �ðN0=NÞ ¼
ðN0=NÞfast=ðN0=NÞslow � 1, which is shown in Fig. 4 for
each pair of slow and fast release data points in Fig. 3. If
disorder results in no change in N0=N or in a change
entirely due to heating, then �ðN0=NÞ ¼ 0, which is in-
dicated by the dashed line on Fig. 4. The reversible reduc-
tion in condensate fraction evident in Fig. 4 at all lattice
depths is more pronounced at higher s and saturates above
�=U ¼ 15 for s ¼ 14.

The inset to Fig. 4 shows an expanded view at low � for
s ¼ 14. Data taken in this regime are sensitive to the effect
of weak disorder on the unit filling MI phase. We observe
that for relatively weak disorder at s ¼ 14, approximately
a 10% reversible decrease in N0=N is measured up to
�=U ¼ 1 (with no change in N0=N after slow release).
This result may seem to be at odds with predictions that
disorder will transform the MI into SF in this regime [3,9].
However, these data are consistent with several scenarios
for the effect of weak disorder on the MI phase, including
transformation into a depleted SF phase such that N0=N is
unchanged, or conversion into a BG phase with a long
enough correlation length such that the momentum distri-

bution is not strongly affected. Before a detailed compari-
son with these data will be able to constrain theory, finite
temperature and the distribution of DBHmodel parameters
shown in Fig. 2 must be included in calculations of con-
densate fraction. Furthermore, Eq. (1) requires corrections
for multiple bands at the highest values of �.
In conclusion, the data in this manuscript may be used as

a benchmark for predictions—N0=N can be straightfor-
wardly computed in many theoretical approaches. In con-
trast to condensed matter systems, for which microscopic
disorder cannot be fully characterized, we have completely
computed the DBH model parameters for the disordered
lattice, thereby eliminating the disorder as a free parameter
in theory. The techniques we employ may also be used to
study disorder in the (Fermi) Hubbard model, which is of
interest to the high-temperature superconducting cuprates.
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FIG. 4 (color). The reversible change in condensate fraction
induced by disorder. Data are shown for s ¼ 6 (green triangles),
s ¼ 12 (red squares), and s ¼ 14 (blue circles). Each data point
is derived from a pair of slow and fast release points from Fig. 3;
the errors bars are computed using the statistical uncertainties
from Fig. 3. An effect unrelated to disorder is the reduction in
N0=N for s ¼ 14 and � ¼ 0, which reflects the presence of
atoms in the MI phase in the pure lattice. The inset is an
expanded view of the low �=U data for s ¼ 14.
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