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Quantum liquids are characterized by the distinctive properties such as the low-temperature behavior of

heat capacity and the spectrum of low-energy quasiparticle excitations. In particular, at low temperature,

Fermi liquids exhibit the zero sound, predicted by Landau in 1957 and subsequently observed in liquid

He-3. In this Letter, we ask whether such characteristic behavior is present in theories with a holo-

graphically dual description. We consider a class of gauge theories with fundamental matter fields whose

holographic dual in the appropriate limit is given in terms of the Dirac-Born-Infeld action in anti–de Sitter

space. We find that these systems also exhibit a sound mode at zero temperature despite having a non-

Fermi-liquid behavior of the specific heat. These properties suggest that holography identifies a new type

of quantum liquid which potentially could be experimentally realized in strongly correlated systems.
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Introduction.—The gauge-gravity duality [1–3] has be-
come a useful tool for investigating strongly coupled field
theories. In the class of models where this tool can be
applied, the strong coupling limit of the field theory is
mapped into the weak coupling, classical limit of a gravity
theory, which can be studied either analytically or with
minimal computer power. For example, a cousin of QCD—
the N ¼ 4 supersymmetric Yang-Mills (SYM) theory—
can be studied using this method. Such studies have
pointed to a universal value of the viscosity/entropy density
ratio in a wide class of strongly coupled theories (for a
review, see Ref. [4]). Somewhat surprisingly, the viscosity/
entropy density ratio of the quark-gluon plasma created at
the Relativistic Heavy Ion Collider seems to be close to this
value, indicating that gauge/gravity duality may be useful
for studies of QCD.

Here wewould like to see what the gauge/gravity duality
has to say about strongly coupled quantum liquids. By
quantum liquids we mean translationally invariant systems
at zero (or low) temperature and at finite density. Given the
important role that quantum liquids play in condensed
matter physics, it is natural to ask whether the newly
developed technique of gauge/gravity duality can give us
any insights into their behavior.

The cornerstones of our understanding of quantum
liquids are two phenomenological theories. These are
Landau’s Fermi-liquid theory [5–9] and the theory of
quantum Bose liquids [7,8]. These two theories describe
two different behaviors of a quantum liquid at low mo-
menta and temperatures. In a Bose liquid, the only low-
energy elementary excitation is the superfluid phonon with
a linear dispersion. This leads to a T3 behavior of the
specific heat at low temperatures. The Fermi liquid has a
richer spectrum of elementary excitations, consisting of
fermionic quasiparticles and a bosonic branch, which con-

tains, in particular, the zero sound. The fermions dominate
the specific heat, which scales as T at low T.
In this Letter, we found, through the gauge/gravity

duality, a new type of quantum liquid. The quantum liquid
we consider has a T6 behavior (�T2p in p spatial di-
mensions) of the specific heat at low temperature.
Despite the non-Fermi-liquid behavior of the specific
heat, the system supports a sound mode at zero tempera-
ture, which we will call ‘‘zero-temperature sound.’’
The mode is almost identical to the zero sound in Fermi
liquids: not only the real part of its dispersion curve is
linear in momentum (! ¼ vq), but the imaginary part has
the same q2 dependence predicted by Landau a long time
ago for quantum attenuation of the zero sound [6].
(Experiments measuring the zero sound quantum attenu-
ation are described in Ref. [10].) The difference is that in
our case the zero-temperature sound velocity coincides
with the first-sound velocity, while in the case of a Fermi
liquid the two velocities are, in general, not equal to each
other.
A specific example considered in this Letter is theN ¼

4 SU(Nc) supersymmetric Yang-Mills (SYM) theory with
Nf masslessN ¼ 2 hypermultiplet fields. This theory has

been suggested as a model which approximates QCD better
than the theory without fundamental quarks. A string-
theoretic description of this system is given by a low-
energy limit of the D3/D7 brane configuration. The theory
has been studied at finite temperature and density using the
gauge/gravity duality [11–19]. Nevertheless, two striking
aspects of this and similar systems (characterized by the
Dirac-Born-Infeld action in anti–de Sitter space)—the un-
usual behavior of the low-temperature specific heat and the
existence of the zero-temperature sound—have so far
eluded attention. Their description is the main purpose
and the main result of the Letter.
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Preliminaries.—The N ¼ 4 SYM theory contains
fields in the adjoint representation of the gauge group
only. Fields in the fundamental representation can be in-
troduced by using the following construction [20]. In type
IIB string theory, one considers a system of Nc D3-branes
aligned along the (x0, x1, x2, x3) directions, and Nf D7-

branes aligned along (x0; x1; . . . ; x7) directions in flat ten-
dimensional space. In the limit of large number of colors
(Nc � 1) and large ’t Hooft coupling (g2YMNc � 1), the
D3-branes are replaced by the near-horizon AdS5 � S5

geometry [1], while the Nf D7-branes can be treated as

probes embedded into this geometry as long as Nf=Nc �
1, so that their backreaction on the geometry can be ne-
glected [20]. The near-horizon D3 brane metric is

ds2 ¼ r2

R2
ð�fTdt

2 þ d~x2Þ þ R2

r2
ðf�1

T dr2 þ r2d�2
5Þ; (1)

where R is the curvature radius of the AdS5 (which is set to
1 in the following), and fT ¼ 1� r4H=r

4. The horizon is
located at r ¼ rH.

We will focus on the case where the N ¼ 2 hyper-
multiplets are massless. In the dual gravity picture this is
described by a ‘‘horizon-crossing’’ D7-branes embedding
in which the distance between the D7 branes and the
horizon in the x8 � x9 direction is zero [13]. The action
for the D7-branes is the Dirac-Born-Infeld (DBI) action

SDBI ¼ �NfTD7

Z
d8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðgab þ 2��0FabÞ

q
; (2)

where TD7 is the D7-brane tension, �a are world volume
coordinates, gab is the induced worldvolume metric and
Fab is the world volume Uð1Þ gauge field, which couples,
at the boundary, to the Uð1ÞB baryon number current J�.
(The exact form of the Uð1ÞB current operator is given
in [11].)

The construction above is specific to the D3–D7 system,
but we can be more general and consider Dq probe branes
whose world volume include an AdSpþ2 factor. For probe

branes corresponding to massless flavors the embedding is
independent of the internal directions. One example with
p ¼ 2 would be the defect D5 on AdS4 � S2 in AdS5 � S5

[21]. The AdS part of the general metric is as in Eq. (1)
with fT ¼ 1� ðrH=rÞpþ1, where the horizon radius is
related to the temperature of the black hole by rH ¼
4�T=ðpþ 1Þ (with R ¼ 1).

We now introduce a finite chemical potential into the
system. This corresponds to turning on a nontrivial back-
ground world volume gauge field A0ðrÞ in the bulk [11].
The DBI action becomes, in the Ar ¼ 0 gauge,

SDBI ¼ �N qVp

Z
drrp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A02

0

q
; (3)

where the factor 2��0 is absorbed into A0, Vp is the spatial

volume of the boundary gauge theory, and N q is propor-

tional to the tension of the Nf Dq-branes [13]. For the D3–

D7 system, N 7 ¼ �NfNc=ð2�Þ4, as determined by the

gauge/gravity duality dictionary [11]. At finite tempera-
ture, the lower limit of integration in (3) is rH.
The solution to the embedding problem is given by

A0
0 ¼

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p þ d2

p ; (4)

where d � ð2��0N qÞ�1� is proportional to the baryon

number density � [13]. In all subsequent formulas, the
results for the D3–D7 case are trivially recovered by setting

p ¼ 3 and using the relation �0�1 ¼ ffiffiffiffi
�

p
.

Low-temperature limit of the specific heat.—One inter-
esting hint to the nature of the phase of matter described by
the probe branes with finite chemical potential is the
behavior of the specific heat at low temperature. The on-
shell value of the total action (which is the sum of the DBI
action (3) describing fundamental degrees of freedom and
the bulk gravitational action dual to the adjoint sector of
the theory) directly gives us minus the thermodynamic
potential � in the grand canonical ensemble. Substituting
the solution (4) for A0

0 into the action, we can write � ¼
�ad þ�fun, where �ad � Tpþ1 is the contribution of the
adjoint degrees of freedom (for the D3/D7 system �ad ¼
��2N2

cT
4=8 is the free energy of N ¼ 4 SYM theory at

strong coupling), and

�fun ¼ N qVp

Z �

rH

dr
r2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2p þ d2
p � N q

pþ 1

�
Z

dpx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hð�Þ

p
; (5)

where � is the ultraviolet cutoff. In Eq. (5), the local
counterterm action built from the metric h�� induced on

the slice r ¼ � by the ambient metric (1) has been added in
the spirit of the holographic renormalization [22]. In the
grand canonical ensemble, the potential � is a function of
T and�, where� is the baryon number chemical potential
related to the density and temperature via the condition
� ¼ R1

rH
drA0

0. The integrals for �fun and � can be ex-

pressed in terms of the Gauss hypergeometric function:

�fun ¼ �0 �
N qVpr

2pþ1
H

ð2pþ 1Þd 2F1

�
1

2
; 1þ 1

2p
; 2

þ 1

2p
;� r2pH

d2

�
þN qVpr

pþ1
H

2ðpþ 1Þ ; (6)

� ¼ �0 � rH2F1

�
1

2
;
1

2p
; 1þ 1

2p
;� r2pH

d2

�
; (7)

where �0 and �0 are the zero-temperature values,

�0 ¼ �ðpÞd1=p; �0 ¼ � N qVp

ðpþ 1Þ�p �
pþ1
0 ; (8)

and�ðpÞ ¼ Bð12 � 1
2p ; 1þ 1

2pÞ=2. We note that the last term
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in Eq. (6),N qVpr
pþ1
H =2ðpþ 1Þ � �c:t:, is independent of

the matter density and has the same temperature depen-
dence as the free energy of adjoint fields �ad. We shall
focus on the density-dependent part of the thermodynamic
potential �� � �fun ��c:t:. Equations (6) and (7) deter-
mine �� as a function of temperature and chemical po-
tential. At low temperature, both equations can be treated
as series expansions in T=�0 � 1. The baryon number
density is proportional to d,

� ¼ � 1

Vp

@�fun

@�
¼ N qd: (9)

One then computes the entropy density sð�; TÞ in the grand
canonical ensemble

sðT;�Þ ¼ � 1

Vp

�
@��ðT;�Þ

@T

�
�;Vp

: (10)

Using Eq. (7), we find the entropy density as a function of
temperature and charge density

sðT; dÞ ¼ s0 þN q

�
4�

pþ 1

�
2pþ1 T2p

2d
½1þOðTd�ð1=pÞÞ�;

(11)

where s0 ¼ 4��=½ð2��0Þðpþ 1Þ� is the entropy density at
zero temperature. This entropy is related to the fermion
thermal mass (free energy), which is negative and propor-
tional to T. Finally, the specific heat (heat capacity per unit
volume) cV at constant density is determined by cV ¼
Tð@s=@TÞ�. At low temperature (T � �0) the density-

dependent part of the specific heat [23] is proportional to
T2p:

cV ¼ N qp

�
4�

pþ 1

�
2pþ1 T2p

d
½1þOðTd�ð1=pÞÞ�: (12)

This has to be contrasted with a gas of free bosons whose
low temperature specific heat is proportional to Tp (a
sphere of volume Tp of occupied states in momentum
space, each with energy T) or a gas of fermions, whose
low-temperature specific heat scales as T for any p (a shell
of thickness T of occupied states above the Fermi surface
contributing an energy T each). The behavior of the spe-
cific heat in Eq. (12) is suggestive of a new type of quantum
liquid.

Zero-temperature sound.—The zero-temperature sound
mode would manifest itself as a pole of the zero-
temperature retarded flavor current density correlator [7–
9]. In the dual gravity language, the pole arises as the
quasinormal frequency of the background geometry [24–
26]. Generically, the quasinormal spectrum is determined
by fluctuations of all background fields including the met-
ric. However, in the particular case we are dealing with, it
is sufficient to consider fluctuations of the DBI U(1) field in
the gravitational background (1) with the nontrivial back-
ground component A0. Moreover, since the dual quantum

field theory is isotropic, we can choose the fluctuations to
depend on time, radial coordinate and one of the spatial
coordinates (e.g., xp) only

A�ðrÞ ! A�ðrÞ þ a�ðr; x0; xpÞ: (13)

Substituting (13) into the DBI action (3) and expanding to
second order in fluctuations, we find that the longitudinal
(a0, ap) and transverse fluctuations do not mix. The action

for the longitudinal fluctuations is

Sð2Þ ¼ N q

2

Z
dpþ1xdrrp

�ð@ra0 � @0arÞ2
ð1� A0

0
2Þ3=2

þ ð@0ap � @pa0Þ2
r4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A0

0
2

q � ð@rap � @parÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A0

0
2

q
�
: (14)

Making a Fourier transform,

a�ðr; x0; xpÞ ¼
Z d!dq

ð2�Þ2 e
�i!x0þiqxpa�ðr; !; qÞ; (15)

introducing a new radial coordinate z ¼ 1=r, and using the
radial gauge ar ¼ 0, the equations for small fluctuations
can be written as

@zðf3z2�pa00Þ � fz2�pð!qap þ q2a0Þ ¼ 0; (16a)

@zðfz2�pa0pÞ þ fz2�pð!qa0 þ!2apÞ ¼ 0; (16b)

f2!a00 þ qa0p ¼ 0; (16c)

where fðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2z2p

p
. Following the approach of [26],

we use Eqs. (16) to derive the equation for the gauge-
invariant variable E ¼ !ap þ qa0:

E00 þ
�ð3q2 �!2f2Þf0
ðq2 �!2f2Þf � p� 2

z

�
E0 þ

�
!2 � q2

f2

�
E ¼ 0:

(17)

The horizon, z ¼ 1, is an irregular singular point of the
differential Eq. (17). The solution in the vicinity of z ¼ 1
is EðzÞ � e�i!z=z. The incoming wave boundary condition
at the horizon [25] singles out one of the exponents

EðzÞ ¼ C
ei!z

z
ð1þOð1=zÞÞ; (18)

where C is a constant. For !z � 1 we have

EðzÞ ¼ Cz�1 þ i!C: (19)

On the other hand, for !z � 1 and qz � 1 with !=q
fixed, the last term on the left-hand side of Eq. (17) can
be dropped, and the solution is given in terms of the Gauss
hypergeometric function

EðzÞ ¼ C1 þ C2z
p�1

�
q2

pfðzÞ þ
ðq2 � p!2Þ
pðp� 1Þ

� 2F1

�
1

2
;
1

2
� 1

2p
;
3

2
� 1

2p
;�d2z2p

��
: (20)
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For z ! 1 we find

EðzÞ ! C1 þ C2ðaz�1 þ bÞ þOðz�2Þ; (21)

with the coefficients a and b given by

a ¼ !2

d
; b ¼ �0ðq2 � p!2Þ

pd
; (22)

where �0 is defined in Eq. (8). Matching to the expansion
(19), we find the coefficients C1 and C2:

C1 ¼
�
i!� b

a

�
C; C2 ¼ C

a
: (23)

The lowest quasinormal frequency is found by imposing
the Dirichlet condition at the boundary, Eð0Þ ¼ 0 [26].
This condition gives the equation C1 ¼ 0, whose solution
at small ! and q determines the dispersion relation of the
lowest quasinormal mode,

! ¼ � qffiffiffiffi
p

p � iq2

2p�0

þOðq3Þ: (24)

What is the nature of this excitation? First, one can
exclude the possibility that it is a superfluid phonon.
Indeed, our background does not break the particle number
symmetry; hence, the ground state is not a superfluid.
Furthermore, the superfluid phonon width has a low-
momentum behavior different from q2, namely, q5 in
3 spatial dimensions [7] and qpþ2 in p spatial dimensions.
The q2 behavior of the imaginary part is characteristic of
the zero sound quantum attenuation; thus, we call this
mode the zero-temperature sound. Yet in other respects
(such as the specific heat temperature dependence) the
system does not show Fermi-liquid behavior. It is notable
that the zero-temperature sound velocity in our system
coincides with the velocity of the finite-temperature first
sound, while in a weakly coupled Fermi liquid it is

ffiffiffiffi
p

p
times larger than the first-sound velocity.

Conclusion.—In this Letter, we have considered a gen-
eral theory described by a DBI action in AdS space. We
found that by turning on a chemical potential one arrives at
a new type of quantum liquid. The specific heat cV has an
unusual non-Fermi-liquid T2p behavior (T6 in 3þ 1 di-
mensions and T4 in 2þ 1 dimensions). The low-energy
spectrum contains a gapless mode with a dispersion rela-
tion similar to the zero sound in Fermi liquids. One can
speculate that the mode observed here is what the Fermi-
liquid zero sound becomes when the interaction is infi-
nitely strong. In this connection, we note that in a simple
model of the Fermi liquid, the velocities of the zero and
first sounds approach each other in the limit where the
interaction strength (parametrized by the Fermi-liquid pa-
rameter F0) is infinite [9].

The systems described here are strongly coupled, as they
have gravity duals. It would be interesting to investigate the
properties of the ground state and the zero-temperature

sound in the weak-coupling regime of the N ¼ 4 SYM
theory with N ¼ 2 matter hypermultiplets. We leave this
problem for future work.
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