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Pesin’s identity provides a profound connection between the Kolmogorov-Sinai entropy hKS and the

Lyapunov exponent �. It is well known that many systems exhibit subexponential separation of nearby

trajectories and then � ¼ 0. In many cases such systems are nonergodic and do not obey usual statistical

mechanics. Here we investigate the nonergodic phase of the Pomeau-Manneville map where separation of

nearby trajectories follows �xt ¼ �x0e
��t

�
with 0<�< 1. The limit distribution of �� is the inverse

Lévy function. The average h��i is related to the infinite invariant density, and most importantly to

entropy. Our work gives a generalized Pesin’s identity valid for systems with an infinite invariant density.
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Chaotic systems are characterized by exponential sepa-
ration of nearby trajectories, which is quantified by a
positive Lyapunov exponent � [1]. Such a behavior leads
to the need for statistical approaches since chaos implies
our inability to predict the long time limit of a system in a
deterministic fashion. Another important quantity by
which chaotic motion can be characterized is the
Kolmogorov-Sinai entropy hKS [1]. It can be regarded as
a measure for the loss of information about the state of the
system, per unit of time. As was shown mainly by numeri-
cal simulations, in many cases hKS is proportional to the
Gibbs entropy production rate [2]; however, in general they
are not the same. These two measures of chaos are related
by Pesin’s profound identity hKS ¼ � in one dimension
(hKS is the sum of positive Lyaponov exponents in dimen-
sions higher than one) [3].

At the same time, it is well known that many systems
such as Hamiltonian models with a mixed phase space [4],
systems with long range forces [5], certain billiards [6],
and one-dimensional hard-particle gas [7] have a Lyapunov
exponent equal to zero. While for complex systems it may
be extremely difficult to determine whether the Lyapunov
exponent is zero or small, due to numerical inaccuracies, it
turns out that most fundamental textbook examples of
chaos theory may have a zero Lyapunov exponent.
Prominent examples for such systems are the logistic
map at the edge of chaos (Feigenbaum’s point) [8] and
the Pomeau-Manneville map which is used to model inter-
mittency (originally in turbulence) [9]. If the Lyapunov
exponent is zero, i.e., separation of trajectories is subexpo-
nential, we have a strong indication that the usual
Boltzmann-Gibbs statistical mechanics is not valid.
Indeed it was found that certain systems with zero
Lyapunov exponents break ergodicity [10]. Classical en-
tropy theory is also not applicable in this case [8,9],
particularly the entropy and average algorithmic complex-
ity grow nonlinearly in time [9], while for a system with a
positive Lyapunov exponent they increase linearly in time.
Still the situation is not hopeless from the point of view of

statistical mechanics and one may consider distributions of
time average observables [10–13].
Connection between possible generalizations of usual

statistical mechanics and systems with subexponential
separation of trajectories have attracted much attention
recently. In particular, a generalized Pesin’s identity for
the logistic map at the edge of chaos was investigated using
Tsallis statistics [8,14]. A critical discussion of this ap-
proach is given in Ref. [15] (and see a reply in [16]).
According to [15] a meaningful generalized Pesin’s iden-
tity must satisfy certain requirements. (i) Averages must be
made with respect to the natural density, in our case the
infinite invariant density [17,18] (see details below).
(ii) Evolution should be for long times, unlike previous
attempts to generalize Pesin’s identity. (iii) The relevant
entropy is the entropy of Kolmogorov and Sinai, not
Boltzmann-Gibbs [19]. (iv) Results should be general in
that they do not depend on particular initial conditions. The
generalized Pesin’s identity, Eq. (19) below, fulfills these
requirements. Thus, we establish a profound relation be-
tween separation of nearby trajectories and entropy, even
though the separation is subexponential.
Consider the Pomeau-Manneville map [20] on the unit

interval with one marginally unstable fixed point located at
x ¼ 0

MðxtÞ ¼ xt þ axzt ðmod 1Þ; z � 1; a > 0: (1)

The discontinuity point � is defined by Mð�Þ ¼ 1. This
map is one of the pioneer models of intermittency. Its
generalizations attracted vast research using different
methods such as continuous time random walks [21] and
periodic orbit theory [22] to name a few. Sojourn times of
trajectories in the vicinity of the unstable fixed point are
described by power law statistics leading to aging [23] and
non-Gaussian fluctuations [9], which are related to weak
ergodicity breaking [10].
For z > 2 the density function of the map is concentrated

on the unstable fixed point in the long time limit. The
derivative jM0ðxÞj at this point is equal to 1, so � ¼ 0 as
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shown already in [9]. Such a behavior is found since most
of the time the particle spends in the vicinity of the mar-
ginally stable fixed point. Following [9] assume that the
sensitivity of nearby trajectories is stretched exponential
�xt ¼ �x0e

��t
�
with 0<�< 1. Using the chain rule, and

the dynamical mapping xtþ1 ¼ MðxtÞ we have

��ðx0Þ ¼ 1

t�
Xt�1

i¼0

lnjM0ðxiÞj; (2)

where the dependence on initial condition is emphasized.
For a normal case and an ergodic system we have � ¼ 1.
Then the usual Lyapunov exponent is [1]

� ¼ lim
t!1

1

t

Xt�1

i¼0

lnjM0ðxiÞj ¼
Z

dx�ðxÞ lnjM0ðxÞj; (3)

where �ðxÞ is the invariant density of the system.
Ergodicity ensures that the time average is equal to the
ensemble average. To prove that a system actually exhibits
stretched exponential separation of trajectories, it is suffi-
cient to find the limit distribution of ��ðx0Þ and show that it
is not trivial (i.e., 0<�< 1). As we now show, for 0<
�< 1, �� does not converge to a constant but remains a
random variable. Below we obtain the distribution of ��

and for this we now calculate the density of trajectories
�ðx; tÞ of Eq. (1).

To obtain the density analytically we use the approxi-
mation of the map [24] for x � 1, dxt=dt ’ axzt , and
extend it to be valid on the interval (0, �). When the
trajectory reaches the boundary x ¼ � it is randomly re-
injected back to the interval (0, �). The density function
�cðx; tÞ of this system is governed by the equation

@�cðx; tÞ
@t

¼ � @

@x
ðaxz�cðx; tÞÞþ a�z�cð�; tÞ; (4)

where the subscript c in �cðx; tÞ is for continuous approxi-
mation. The first term on the left-hand side (lhs) represents
deterministic escape from the marginally unstable fixed
point while the second term accounts for reinjection of
particles. The solution of Eq. (4) in Laplace space is

~� cðx; sÞ ¼ ��1 ~OxðsÞ
1� a�z�1 ~O�ðsÞ

; (5)

where

~O xðsÞ ¼ bðz� 1Þ
�
1� ðbsÞ1=ðz�1Þ�

�
z� 2

z� 1
; bs

��
; (6)

and b ¼ ðz� 1Þ�1a�1x1�z. Statistics of the system is con-
trolled by� ¼ 1 for z < 2, � ¼ 1

z�1 for z � 2. Considering

the small s behavior (equivalent to t ! 1) and transform-
ing the solution into the time domain, we obtain for 0<
�< 1 (z > 2)

�cðx; tÞ �
8
<
:

a��1x�1=�

��
sinð��Þ

� t��1; x � xc;
sinð��Þ
��1þ� t

�; x � xc:
(7)

For z < 2 we find the following solution:

�cðx; tÞ �
� ð2� zÞx1�z; x � xc;
ð2� zÞt; x � xc;

(8)

and for z ¼ 2 the solution is given by

�cðx; tÞ �
8
<
:

x�1

lnðtÞ ; x � xc;
t

lnðtÞ ; x � xc:
(9)

Note that the density function is time independent only for
z < 2 and x � xc, Eq. (8). We introduce the infinite in-
variant density

�� cðxÞ ¼ t1���cðx; tÞ ¼
8
<
:

a��1

��
sinð��Þ

� x�1=�; x � xc;
sinð��Þ
��1þ� t; x � xc;

(10)

for 0<�< 1. Scaled functions ��cðxÞ are independent of

time for x � xc. Note that ��cðxÞ � x�1=�, and its integral

diverges,
R�
0 dx ��cðxÞ ¼ 1. Thus, ��cðxÞ is not normalizable

[17,18]. Still, as we show later, the infinite invariant density
is useful for the calculation of the statistical properties of
the dynamics.
We compute the invariant density numerically and com-

pare it with the analytical density function Eq. (10). In
these simulations we start with a uniform density and plot
��ðxÞ ¼ t1���ðx; tÞ versus x. Results are shown in Fig. 1.
We find excellent agreement between Eq. (10) and nu-
merics without fitting. Horizontal lines represent asymp-
totic solution for x � xc calculated for the corresponding
time of the simulation, while the sloping line corresponds
to the asymptotic solution for x � xc which decays as

x�1=� [see Eq. (10)]. In Fig. 1 xc represents the crossover
from one asymptotic of ��ðxÞ to another. As t ! 1, xc ! 0
and we approach the infinite invariant density.

FIG. 1 (color online). Numerically calculated ��ðxÞ ¼
t1���ðx; tÞ for the map Eq. (1) with � ¼ 0:3 and a ¼ 1. Here
ti ¼ 10i, from bottom to top i ¼ 2, 3, 4. Dashed lines correspond
to Eq. (10) with no fitting parameters. xc represents the crossover
from one asymptotic to another. Note that xc decreases with
time, and when t ! 1 we approach the infinite invariant density.
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To find the distribution of ��ðx0Þ Eq. (2), we use a
simple stochastic approach. The same distribution can be
found using Darling-Kac theorem applied to our observ-
able Eq. (2) [13]. Consider the logarithm of the derivative
of the map y ¼ lnjM0ðxtÞj in the phase with infinite invari-
ant density 0<�< 1. We define a two-state process
IðtÞ ¼ 0 if y < � and IðtÞ ¼ 1 if y > �. Waiting times in
state 0 are distributed according to the probability density
function (PDF) c ðtÞ � A=t1þ� as t ! 1, or in Laplace

space ~c ðsÞ ¼ R1
0 dte�stc ðtÞ � 1� Bs�, as s ! 0, where

A, B are positive constants, so the average waiting time is
infinite as is well known [21]. In contrast, waiting times in
state 1 have a characteristic average time. Neglecting
correlations, we consider IðtÞ as a renewal process. Let n
be the number of renewals, namely, number of transitions
from state 0 to 1. The logarithm of the derivative of the map
lnjM0ðxtÞj is equal to zero most of the time [roughly when
IðtÞ ¼ 0] since the trajectory stays for long time near
marginally unstable fixed point, only for short periods its
value deviates from zero. The sum of logarithms along a
trajectory is thus proportional to n:

P
t�1
i¼0 lnjM0ðxiÞj � cn,

where c is a positive constant. Our goal is to calculate
the PDF of scaled generalized Lyapunov exponents ��,
Eq. (2). The PDF of the number of renewals n which occur
up to time t is given by [25]

PnðtÞ ¼ 1

�

t

n1þ1=�B1=�
l�

�
t

ðBnÞ1=�
�
; (11)

where l� is the one-sided Lévy PDF defined through its

Laplace transform ~l�ðsÞ ¼ expð�s�Þ. We define � ¼
��=h��i and, since h��i ¼ chni, � ¼ n=hni is independent
of c. Using Eq. (11)

P�ð�Þ ¼ �1=�ð1þ �Þ
��1þ1=�

l�

�
�1=�ð1þ �Þ

�1=�

�
: (12)

This is one of the main equations in the manuscript since it
gives the PDF of scaled generalized Lyapunov exponents
��=h��i. Distributions of � ¼ ��=h��i obtained by simu-
lations are shown in Fig. 2. Smooth curves correspond to
analytical PDF Eq. (12) without fitting. The perfect agree-
ment between theory and numerical results indicates that
the general theory works well for finite time simulations.

Now we calculate the average h��i. Using Eq. (2)

h��i ¼
Z 1

0

P
t�1
i¼0 lnjM0ðxiÞj

t�
�ðx0Þdx0; (13)

where the averaging is over initial conditions distributed
according to some initial density. Since we are interested in
the long time limit, we replace the summation with an
integral and average over the density function

h��i � 1

t�

Z 1

0
dx

Z t

0
lnjM0ðxÞj�ðx; tÞdt: (14)

According to Eq. (7), the density function has two asymp-
totics valid for x � xc and x � xc

h��i � 1

t�

Z xc

0
dx

Z t

0
lnjM0ðxÞj�ð0; tÞdt

þ 1

t�

Z 1

xc

dx
Z t

0
lnjM0ðxÞj�ðx; tÞdt; (15)

where xc denotes the crossover from one asymptotic of
�ðx; tÞ to another (see Fig. 1). We define it as �ðxcÞ ¼
�ðx � xcÞ. Using Eq. (7), xc ¼ ��t��. When t ! 1,
xc ! 0, so the first integral in Eq. (15) vanishes. This
fact is not obvious since �ðx � xcÞ ! 1 [see Eq. (7)], it
happens because we consider a specific observable with
lnjM0ðxÞj ! 0 as x ! 0, which cancel the t� divergence
found in Eq. (7). Computing the integral over time and
using t1���ðx; tÞ ¼ ��ðxÞ, we obtain our second main result

h��i ¼ 1

�

Z 1

0
dx lnjM0ðxÞj ��ðxÞ: (16)

Thus, even though ��ðxÞ is not normalizable it yields the
average generalized Lyapunov exponent h��i. Since
lnjM0ðxÞj vanishes precisely where the infinite invariant
density diverges, the integral is finite and positive. Our
main result Eq. (16) is very elegant, since up to a constant
� it states that all one needs to describe separation of
trajectories is to replace the invariant density with the
infinite invariant density. For the stochastic model Eq. (4)
with 0<�< 1 using Eq. (10), we find

h��i ¼ 1

�

Z 1

0
dx

a��1

��

sinð��Þ
�

lnð1þ azx1=�Þ
x1=�

: (17)

We emphasize that our main results Eqs. (12) and (16) are
generally valid for systems with an infinite invariant den-
sity ��ðxÞ. Equation (17) is specific to maps with one
unstable fixed point and can be used to verify the theory
numerically.
In Fig. 3 we present perfect agreement between numeri-

cal simulations of h��i, and Eq. (16) with ��ðxÞ calculated
numerically. For not too large z, good agreement between

FIG. 2 (color online). P�ð�Þ for � ¼ 0:75, 0.59, 0.5 from
bottom to top on the lhs of the figure obtained with h��i
calculated according to Eq. (16). Here t ¼ 105. Smooth curves
correspond to analytical PDF Eq. (12) without fitting.
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simulations and the theory based on the stochastic approxi-
mation for the infinite invariant density Eq. (17) is found.
For large z the convergence is slowed down, since � is
small. For z < 2 the standard Lyapunov exponent Eq. (3) is
recovered.

We now establish a profound relation between h��i and
entropy, a Pesin-like identity. Mathematicians have rigor-
ously shown that entropy h� for maps with infinite invari-
ant measure satisfy Rohlin’s formula [18,26]

h� ¼
Z

dx ��ðxÞ lnjM0ðxÞj; (18)

where ��ðxÞ is the infinite invariant density. From Eqs. (16)
and (18) we obtain the identity

h� ¼ �h��i: (19)

Only in the limit � ! 1 we get the standard Pesin’s iden-
tity � ¼ hKS.

The entropy h� for infinite measure preserving trans-
formations was introduced by Krengel as the Kolmogorov-
Sinai entropy of its first return transformation (FRT): h� ¼R
A dx ��ðxÞhKSðRAÞ [27]. Here the FRT RA is defined on any

subset A of finite measure as MnðxÞðxÞ, where nðxÞ is the
smallest positive integer n such that Mn 2 A. Krengel’s
entropy does not depend on A and satisfies Rohlin’s for-
mula Eq. (18). Our generalized Pesin’s identity Eq. (19)
shows that Krengel’s entropy has a surprisingly simple
Physical meaning, it is equal to the averaged separation
of trajectories.
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