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We study the intrinsic computational power of correlations exploited in measurement-based quantum

computation. By defining a general framework, the meaning of the computational power of correlations is

made precise. This leads to a notion of resource states for measurement-based classical computation.

Surprisingly, the Greenberger-Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge as

optimal examples. Our work exposes an intriguing relationship between the violation of local realistic

models and the computational power of entangled resource states.
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A striking implication of measurement-based quantum
computation (MBQC) is that correlations possess intrinsic
computational power. MBQC is an approach to computa-
tion radically different from conventional circuit models.
In a circuit model, information is manipulated by a net-
work of logical gates. In contrast, in the standard model of
MBQC (also known as ‘‘one-way’’ quantum computation),
information is processed by a sequence of adaptive single-
qubit measurements on an entangled multiqubit resource
state [1–3]. Impressive characterization of the necessary
properties of quantum resource states that enable universal
quantum computation in the measurement model has al-
ready been achieved [4,5]. However, it is not the quantum
states themselves, but the correlated classical data returned
by the measurements which embodies this computational
power. A necessary ingredient to extract this power is a
classical control computer (see Fig. 1), which processes
and feeds forward measurement outcomes and directs
future adaptive measurements. From this classical com-
puter’s perspective, the correlated measurement outcomes
enable it to compute problems beyond its own power.

In this Letter we will make the notion of the computa-
tional power of a correlated resource precise. By doing so,
a natural classical analogue of measurement-based com-
putation emerges and we find a link to quantum nonlocal-
ity. Specifically, we show that the Greenberger-Horne-
Zeilinger (GHZ) problem [6] and the Clauser-Horne-
Shimony-Holt (CHSH) construction [7] emerge as closely
related to measurement-based classical computation
(MBCC), as does the Popescu-Rohrlich nonlocal box [8].

Framework for MBQC.—Wewish to study the computa-
tional power of correlated resources in a more general
setting than the particular models of MBQC which have
been proposed [1–5]. To achieve this, let us first define a
general framework of computational models which shares
the essential features of MBQC. It consists of two compo-
nents, a correlated multipartite resource and a classical
control computer. A correlated multipartite resource con-
sists of a number of parties, which exchange classical
information with the control computer; see Fig. 1. The

correlations in their outputs are solely due to their joint
history and no direct communication between parties is
allowed during the computation. There shall be just a
single exchange of data with each party. This restriction
is an important assumption and we discuss its necessity and
consequences in [9]. The party will receive an input from
an alphabet of k choices and will return one of l outcomes.
The second component is a classical control computer of

specified power. The control computer can store classical
information, exchange it with the parties, and compute
certain functions. Notably, the classical control computer
is the only part of the model where active computation
takes place. Before the computation commences, the sys-
tem components are preprogrammed to specify the com-
putation to be performed. Specifically, the control
computer receives the functions it will evaluate and the
individual parties receive a specific set of measurement
bases, or more generally a choice of k settings.
This framework consists only of explicitly classical

objects—all quantum features are hidden in the possibly
nonclassical nature of the correlations. The framework
captures the most general model of a single classical
system (the control computer) interacting with multiple
correlated (but nonsignalling) parties, with the key restric-
tion that each party is addressed only once. However, we
place as little restriction as possible on their internal struc-
ture. For example, the parties making up the system could

correlated resource

control computer

FIG. 1 (color online). The control computer provides one of k
choices as the classical input (downward arrows) to each of the
correlated parties (circles in the resource) and receives one of l
choices as the output.
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be qubits, or physical objects of any dimension. In fact, the
framework is so general that it admits models where the
correlations between the parties do not obey quantum
mechanics.

It is straightforward to see how the original (one-way)
model fits into this framework. Each party holds a single
qubit of the cluster state and a measuring device, prepro-
grammed with two sets of measurement bases j0i � ei�j1i
and j0i � e�i�j1i, where � is party dependant and specific
for a particular computation. In this model k ¼ l ¼ 2; i.e.,
only a single bit is sent to each party to specify the sign of
the angle and the returned bit is the actual outcome of the
measurement. It is remarkable that full universal quantum
computation can be achieved with the minimal values of k
and l. Since this requirement represents the most challeng-
ing setting for a correlation to exhibit computational
power, we adopt it for the remainder of this Letter and
leave nonbinary communication for the discussion.

The starting point for our analysis is the observation that
the control computer for a computation using the cluster
state does not require the full power of a universal classical
computer. The only operations needed to control the mea-
surements are parity calculations [1,3] which can be ob-
tained with the logical XOR gate or, for a reversible scheme,
with the CNOT gate. The parity computer is a device
implementing circuits containing only CNOT operations
and NOT operations. It can solve a number of problems
efficiently, such as calculating the parity of bit strings, and
simulating deterministic Clifford group quantum circuits
(Gottesman-Knill theorem) [10]. However, the parity com-
puter is not able to calculate any unbalanced logical func-
tion, such as NAND, AND, OR, or TOFFOLI.

To denote the different degrees of computational com-
plexity [11] wewill use the convenient notation established
in computer science. We shall only consider complexity
classes which assume a polynomial computation time—a

physically realistic requirement. The computational power
of the parity computer has been shown to lie in a complex-
ity class named Parity L, or �L [10,12], while universal
classical and quantum computation are associated with
classes P and BQP respectively. It is believed that �L is
weaker than P which, in turn, is weaker than BQP; how-
ever, none of these inclusions are proven to be strict.
The notation �L ! BQP indicates that the parity com-

puter is promoted to full quantum universality when, for
example, the cluster state is used as the resource state.
Other families of resource states are readily classified
within our framework; see Table I. Two distinct groupings
can be found in the literature. Graph states [5,13], which
employ solely the algebra of Pauli operators to ensure
determinism, are in the class �L ! BQP. Another family,
the computational tensor network (CTN) states [4], enables
universal measurement-based quantum computation via a
different method of accounting for the random measure-
ment outcomes. For some CTN states it is not possible to
achieve the correction using Pauli operators only and ad-
dition modulo n > 2 is employed. ‘‘Carrying’’ in addition
is equivalent to the AND operation and such arithmetic is
not possible on the parity computer. Certain CTN states,
thus likely belong to a different class of computational
power than the cluster states, specifically, being in class
P ! BQP but not �L ! BQP (indicated by �? in
Table I). This would also imply that�L ! P is not enabled
by these CTN states.
Measurement-based classical computation.—We now

consider the reverse question: given the parity computer,
what resource states can it be fed to raise its computational
power? Adding any deterministic two-bit gate, which is not
itself a product of NOT and CNOT operations, already con-
stitutes a classical universal gate set. A resource state
which promotes the parity computer to classical universal-
ity is a member of the class �L ! P [14]; i.e., it enables
MBCC. It is clear that the cluster states (and any state in
�L ! BQP) belong to this class. However, it has been
unresolved which features of the cluster state enable this
computational enhancement and whether there exist states
that enable �L ! P but not �L ! BQP. A way to pro-
mote the parity computer (� L) to classical universality (P)
is by giving it access to a polynomial number of universal
gates, such as the NAND gate. One way to achieve this
would be to take cluster states of a bounded size, each
just large enough to implement a NAND or TOFFOLI [15] via
standard measurement patterns. Naturally, we wish to
know how far the size of the resource can be reduced.
Theorem 1. There exists no bipartite quantum state

upon which the parity computer can act to deterministi-
cally produce the NAND of two independent input bits.
Proof. We prove this by contradiction. Assume that

such a quantum state would exist. To satisfy the nonsignal-
ling condition and for the parity computer to be able to
decode the result, the value of NAND of the input bits a and

TABLE I. The table indicates the computational power of the
cluster state and other resource states. Cluster and graphs states
are resource states promoting the parity computer to quantum
universality (� L ! BQP, implying also P ! BQP and �L !
P). CTN states promote a universal classical control computer to
a universal quantum computer (P ! BQP) while a polynomial
supply of three-qubit GHZ states enables the parity computer to
achieve full classical computation (� L ! P). A cross (�)
indicates that the resource is not capable of providing the
specified computational enhancement, under the assumption
that the complexity classes are distinct, i.e., �L � P � BQP.
A �? indicates a conjecture of this.

�L ! BQP P ! BQP �L ! P

Cluster states ! ! !
Lattice graph states [5] ! ! !
Certain CTN states [4] �? ! �?

GHZ states a � � !
aalso (nonphysical) Popescu-Rohrlich boxes.
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b must be encoded in the parity of the two outputs m1 and
m2; see Fig. 2. Let Pða;bÞ be the probability of success of

such a device acting on input a and b. Since the gate is
deterministic for all input values,

1

4

X

fa;bg2f0;1g
Pða;bÞ ¼ 1 (1)

must hold. This expression is a form of the CHSH quantity
[7,16]. Bell’s theorem places the classical upper bound for
this quantity at 0.75 and Tsirelson’s bound [17] limits this

quantity to ð2þ ffiffiffi
2

p Þ=4 � 0:85 for any correlations of bi-
partite quantum states. Thus, a bipartite resource state for
deterministically computing a NAND gate in this framework
would require correlations stronger than quantum mechan-
ics. Indeed, the impossible device which implements this
perfectly has been well studied in the context of general-
ized no-signalling theories and is known as a Popescu-
Rohrlich nonlocal box [8]; see Fig. 2. Note that
Tsirelson’s bound (and thus this theorem) is valid for
parties of arbitrary dimension and internal structure. h

Theorem 2. Measurements on a single three-qubit
GHZ state, controlled by the parity computer, enable the
deterministic computation of the NAND gate.

Proof. The constructive proof follows directly from
the well-known GHZ problem in the form introduced by
Mermin [6]. Three measuring devices receive, respec-
tively, the input bits a, b, c 2 f0; 1g, and then act on three

qubits which form a GHZ state, jc i ¼ j001i�j110iffiffi
2

p . The first

2 bits are independent, the third input c ¼ a � b is fixed as
the parity of the first two. Importantly, this operation can be
performed by the controlling parity computer. Measuring
devices which receive bit 0 measure Pauli observable �x,
and those receiving 1 measure �y. The state jc i is the only
simultaneous eigenstate of the four equations correspond-
ing to all four independent choices of input:

�x ��x ��xjc i ¼�jc i
�x ��y ��yjc i ¼�jc i
�y ��x ��yjc i ¼�jc i
�y ��y ��xjc i ¼þjc i:

(2)

Note, that in every case the eigenvalue is ð�1ÞNANDða;bÞ. If
we associate binary 0 with measured eigenvalue þ1 and
binary 1 with �1 and label the measurement outcome bits
m1, m2, and m3, respectively, Eqs. (2) guarantee that m1 �
m2 �m3 ¼ NAND (a, b) [18]. The parity computer can
easily extract NAND (a, b) from the measurement outcomes
mjðj ¼ 1; 2; 3Þ via a sequence of CNOT operations. h

Corollary. A polynomial supply of three-qubit GHZ
states is a resource for MBCC with deterministic gates,
which promotes the parity computer to classical universal-
ity (� L ! P). The GHZ states are optimal resources in
that they minimize the number of nonseparable parties.

Proof. Follows from the universality of NAND and
theorems 1 and 2. h
Discussion.—We have introduced a framework for clas-

sifying the computational power of correlations, and hence
resource states, in measurement-based computation. The
class of quantum states which enable deterministic univer-
sal classical computation when the control computer is the
parity computer (� L ! P) is particularly interesting. We
have shown that a polynomial supply of three-qubit GHZ
states is an optimal resource for measurement-based clas-
sical computation, limiting the number of parties sharing
entanglement to three. Generating the correlations of the
NAND using only two correlated parties implies precisely

the correlations of the nonlocal box, which violates the
CHSH inequality maximally. Our framework thus unites
the two most important ‘‘nonlocality paradoxes,’’ giving
them a pleasing interpretation as computational tasks (see,
also, [16]). Moreover, this equivalence delivers the simple
explanation for the apparent violation of Tsirelson’s bound
for measurements on a GHZ state [21] when a nonstandard
definition of locality is employed.
The introduced framework places the role of the classi-

cal data flow to the fore, leaving the internal structure of the
parties entirely unrestricted. Alternative approaches are
possible, for example, one could place restrictions on the
allowed operations of the parties, such as the internal
dimension or types of measurement allowed, and leave
the classical data flow unrestricted. This could provide
additional structure in the classification of resource states.
In particular, permitting a higher degree of communication
(i.e., k, l > 2) would motivate the classification of the
complexity of nonbinary logic circuits with restricted
gate sets. Such a complexity class might characterize the
computational power needed for the control of measure-
ments on certain CTN states, which appear to require
nonbinary modulo arithmetic. Care would be needed to
retain the correlation-based characteristic of MBQC since
active computation could take place within the individual
parties; i.e., a party could hold a NAND gate, or even a full
quantum computer.

FIG. 2. In this framework the nonlocal box and the three-qubit
GHZ state have a strikingly similar structure. Traditionally, a
nonlocal box (depicted on the left) is defined to implement the
AND of the inputs a and b. Measurements on the GHZ state,

shown on the right, also implement an AND. In both cases the
AND emerges as the parity of all outcomes, i.e.,

L
n
j¼1 mj ¼

ab ¼ AND (a, b); the difference is the number of parties, n, used.
(The final negation of AND to NAND can be achieved by a single
NOT operation by the parity computer.)
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Finally, a notable feature of our results is that the
measurements implementing the NAND can be made in
parallel. The logical depth of a NAND-gate circuit imple-
mented in this way will thus share the same scaling as the
circuit implementation, with an additional factor due to
parity calculations on either side of the measurements. An
alternative to implementing the circuit via measurements
on multiple GHZ states would be to represent the whole
logical circuit in the measurement outcomes of a single
multiqubit entangled state. This could imply new methods
of circuit parallelization via quantum means [22].

Aaronson and Gottesman [10] proved that Pauli mea-
surements on any stabilizer state (such as a GHZ state) can
be simulated in Parity L. This seems to contradict our
result, if one assumes �L � P, since we have shown that
Pauli measurements on GHZ state enable universal classi-
cal computation. The important difference is that here the
Pauli measurements needed are adaptive. The measure-
ment made,�x or �y, is controlled upon the bit received by

the measurement device. This is equivalent to a controlledffiffiffiffi
Z

p
within the measurement device, which is not in the set

of ‘‘Clifford group’’ operations considered in [10]. In other
words, only nonadaptive fixed basis Pauli measurements
on stabilizer states have been shown to lie in Parity L. This
resolves the apparent contradiction.

The computational resource character of entangled
states is a surprising feature of the quantum world. We
hope that this Letter helps to refine our understanding of
this property and provides tools for its further analysis.
This work reveals a number of open questions and under-
lines the important connections between physics and com-
puter science which quantum information science has been
so successful in illuminating.
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