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We consider forces on an atom due to a plane-wave light pulse. The standard view of the optical dipole

force indicates that red-detuned light should attract the atom towards high intensity. While the atom is

inside the pulse, this would increase the average momentum per photon from p0 to p0n, where n is the

average refractive index due to the presence of the atom. We show, however, that this is the wrong

conclusion and that the dispersive forces repel the atom from the light in this particular case, giving the

photons a momentum p0=n. This leads us to identify Abraham’s optical momentum with the kinetic

momentum transfer. The form due to Minkowski is similarly associated with the canonical momentum.

We consider the possibility of demonstrating this in the laboratory, and we note an unexpected connection

with the Aharonov-Casher effect.
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The study of light within a medium has identified a
surprising number of candidates for the density of optical
momentum. Principal among these are the forms given by
Minkowski, SMin ¼ D� B, and by Abraham, SAbr ¼ E�
H=c2 [1]. When integrated over the volume of the medium
these alternatives ascribe different momenta to a photon
propagating in the material: pMin ¼ p0n and pAbr ¼ p0=n,
respectively, where p0 is the free-space photon momentum
and n is the refractive index. It is intriguing to note that the
uniform motion of the center of mass energy leads, un-
ambiguously, to the Abraham expression [1]. Considera-
tion of diffraction, however, leads equally convincingly to
the Minkowski form [2]. There is, moreover, a bewildering
array of experimental studies and associated theoretical
analyses which appear to favor one or other of these
momenta or, indeed, others [1,3,4]. Global momentum
conservation is certainly not in doubt, and it is clear that
both the Minkowski and Abraham forms are true momen-
tum densities, but understanding which provides the natu-
ral description of any given phenomenon remains a
challenge. At a fundamental level we can trace the origin
of this problem to the difficulty in separating the electro-
magnetic field from the matter [5,6]. The absence of a
unique optical momentum has led some authors to concen-
trate first on the Lorentz force and to calculate from this the
relevant momentum transfer [4,5,7–9].

In this Letter, we consider light interacting with a single
atom. This medium is simple enough for us to identify the
optical momentum with some clarity. We find that both the
Minkowski and Abraham momenta have readily identifi-
able roles associated, respectively, with the canonical and
kinetic momenta of the atom.

Let us consider a single atom with an electric-dipole
moment d interacting with a light pulse. Within the dipole

approximation the polarization is localized at the position
of the atom, ratom, and our electric displacement and mag-
netic flux densities are simply D ¼ �0Eþ d�ðr� ratomÞ
and B ¼ �0H. It follows that there is a very simple
relationship between the Minkowski and Abraham mo-
menta:

Z
SMind

3r ¼
Z

SAbrd
3rþ d� BðratomÞ: (1)

In order to understand the nature of this difference let us
calculate the force exerted on our atom by a plane-wave
pulse of light passing the atom, as depicted in Fig. 1. The
ith component of the Lorentz force exerted on our slowly
moving atom (v � c) is simply [4,9,10]

Fi ¼ ðd � rÞEi þ ð _d� BÞi: (2)

Alternatively, the Maxwell equation _B ¼ �r� E allows
us to rewrite this in the form [4,9,10]

Fi ¼ F 1i þF 2i ¼ d � @

@xi
Eþ @

@t
ðd�BÞi: (3)

In the literature of laser cooling and trapping, the force is
normally given as just F1, without the term @

@t ðd� BÞ
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FIG. 1 (color online). Illustration of the system under consid-
eration.
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(Refs. [11,12] are two examples of many). For many
practical situations the missing term is of little conse-
quence. For us, however, it is not only significant, but it
accounts fully for the difference between the Abraham and
Minkowski momenta.

The plane-wave laser field traveling along the z axis can
be written as

E ¼ Eð!t� kzÞ cosð!t� kzÞê; (4)

where ê is the constant, transverse polarization and k is the
wave vector. This gives the expectation value of F 1z as

hF 1zi ¼ hd � êi
�
@E
@z

cosð!t� kzÞ þ kE sinð!t� kzÞ
�
:

(5)

The factor hd � êi is the expectation value of the component
of electric-dipole moment that couples to the field. The rest
of the right-hand side is the field gradient. This has been
taken outside the integral over the atomic wave function
under the assumption that the center of mass wave packet is
small compared with the distance over which the field
gradient varies. This is a good approximation in nearly
all cases because the size of the wave packet is smaller than
the optical wavelength for any temperature above the recoil
limit.

The dipole hd � êi can be obtained from the optical
Bloch equations that describe the evolution of the atomic
density matrix in the presence of the light field. For a two-
level atom within the rotating-wave approximation, this
has a steady-state solution

hd � êi ¼ 2D½u cosð!t� kzÞ � v sinð!t� kzÞ�; (6)

where D is the off-diagonal matrix element of d � ê and

u
v

� �
¼ �

�

� � 1
2�

�2 þ �2 þ 1
2�

2
(7)

describe the components of the driven dipole in phase and
in quadrature with the driving field [13,14]. Here � ¼ !�
!at is the detuning of the light frequency from the atomic
transition frequency, � is half the spontaneous decay rate
of the population in the upper state, and � is the Rabi
frequency, defined by @� ¼ �DE.

On substituting Eqs. (6) and (7) into Eq. (5) and taking
the time average over an optical cycle, we obtain the
average force

hF 1zi ¼ Dðu@E=@z� vkEÞ: (8)

The first term, known as the optical dipole force or gradient
force, has a dispersive frequency dependence and is asso-
ciated with the in-phase part of the driven dipole. The
second term, the scattering force, has an absorptive fre-
quency dependence and is due to the scattering of momen-
tum out of the light beam by spontaneous emission.

We shall return later to the scattering force, but let us
consider first the gradient force in Eq. (8) and assume that
the detuning is red, so that � is negative. Then the leading
edge of the pulse exerts a gradient force that attracts the
atom towards higher light intensity. Once the atom is fully
enveloped by the pulse, the net momentum imparted to it
by this gradient force is

PrE ¼
Z

Du
@E
@z

dt ¼ @�

2c
ln

�
1þ

1
2�

2
0

�2 þ �2

�

’ � 1

2
DuE0=c: (9)

Here �0 is the Rabi frequency due to the electric field
inside the light pulse. This result follows from the replace-
ment of dt by dz=c, which is satisfactory because the
velocity of the atom is negligible in comparison with c.
We also neglect in this formula the very small difference
between c and the group velocity of the light in the
presence of the atom. The final expression on the right-
hand side of Eq. (9) applies in the linear response approxi-
mation, where �2 � �2 þ �2. This is reasonable, of
course, because the Minkowski and Abraham momenta
differ in their dependences on the (linear) refractive index.
We turn now to F 2, the second term on the right-hand

side of Eq. (3), which would normally be neglected. This
also acts throughout the leading edge of the pulse, giving
the atom an additional momentum along the z direction of

Pd�B ¼ hd � êiE0=c ’ DuE0=c: (10)

Here we have used Eq. (6) for the expectation value of the
dipole and in the last step we have again averaged over an
optical cycle. We see that the impulse d�B is twice as
large as that generated by the gradient force and is in the
opposite direction. Consequently, the total momentum im-
parted to the atom by the dispersive force acting on the
leading edge of the pulse is equal to that of the gradient
force, but in the opposite direction: with red detuning the
atom is repelled from the light, not attracted to it.
Why do we normally neglect the impulse d�Bwhen it

is so significant here? The reason is that this impulse
depends on the change in field strength but not on the
time taken for the atom to enter the field. By contrast, the
gradient force produces an impulse proportional to the time
for which the force acts. In many applications, the intensity
distribution is static and then this time is set by the velocity
of the atom, not by the speed of light. In those cases, the
impulse generated by the gradient force is much larger than
d� B, which can then be safely neglected.
In the discussion above, we use Eq. (3) to describe the

force because this is closer to the expression (F 1) that is
normally used in the laser cooling and trapping literature.
If instead we use Eq. (2), we obtain the same result, but
with a physically more intuitive description. In this for-
mulation, the first term derives from the Coulomb force,
and because the electric field has no component in the z
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direction this term makes no contribution to the force in the
system under consideration. Instead, the force comes en-
tirely from the second term in Eq. (2), which can be
immediately understood as a manifestation of the magnetic
Lorentz force qv�B. On substituting Eqs. (6) and (7) into
Eq. (2) and taking the time average over an optical cycle,
we obtain the average force

hFzi ¼ D

�
@u

@t

E
c
� vkE

�
: (11)

The first term is the dispersive part of this force and
integrating it over the leading edge of the pulse we obtain
once again an atomic momentum ofþDE0u=ð2cÞ, indicat-
ing repulsion from the red-detuned light. The second term
is again the scattering force that we have already seen in
Eq. (8).

Knowing that the dispersive force gives the atom addi-
tional momentum in the z direction, it follows from the
conservation of momentum that this same interaction must
reduce the momentum of the light by a corresponding
amount. As the number of photons in a pulse of volume
V is 1

2 �0E
2
0V=ð@!Þ, the momentum of each photon be-

comes

p ¼ p0

�
1� Du

�0E0V

�
’ p0

1þDu=ð�0E0VÞ ; (12)

the last step being valid because the correction is small.
From Eq. (6) we see that the real (i.e., in-phase) part of the
electric susceptibility is �0 ¼ 2Du=ð�0E0VÞ. This is small,
of course, so the real part of the refractive index is well
approximated by 1þ 1

2�
0 and therefore

p ¼ p0

n
: (13)

This result has again assumed that �2 � �2 þ �2, so that
the linear response approximation is valid. We see that the
momentum transfer to the atom requires us to identify the
Abraham momentum with each photon in our pulse.

We note that if the term F 2 in Eq. (3) is neglected, then
the change of photon momentum due to the atom is exactly
reversed and we obtain instead the result p ¼ p0n, which is
the Minkowski result. This can be understood directly from
Eq, (1) because dropping F 2 from the force on the atom
adds d� B to the momentum of the light, thereby con-
verting the Abraham momentum into the Minkowski
momentum.

If the momentum transferred by the Lorentz force has
the Abraham value, then what is the physical significance
of the Minkowski momentum? To understand this, we note
that the kinetic momentum operator pkin ¼ M _ratom differs
from the canonical momentum operator pcan ¼ M _ratom �
d� BðratomÞ [15] by exactly the same quantity that dis-
tinguishes the Minkowski and Abraham momenta from
each other in Eq. (1). Therefore,

p kin þ
Z

SAbrd
3r ¼ pcan þ

Z
SMind

3r: (14)

If, as our analysis has suggested, an increase in pkin is
associated with a corresponding decrease in the Abraham
momentum, then it follows that a change in the canonical
momentum of the atom must similarly be associated with
an equal and opposite change in the Minkowski momen-
tum. In quantum theory it is the canonical momentum that
is associated with the wavelength, and it may be for this
reason that it is the Minkowski momentum that gives the
simplest description of wavelike phenomena, such as dif-
fraction [2], whereas the Abraham momentum is naturally
associated with particlelike phenomena associated with
forces and the kinetic momentum.
In an experiment to test the kinetic momentum transfer,

the atom would also experience the scattering force Fscatt,
which appears as �DvkE in either formulation of the
electric-dipole force, as seen in Eqs. (8) and (11). The
proportionality to v alerts us to the fact that this force
comes from the dissipative interaction between the field
and the component of the dipole in quadrature with it.
Using Eq. (6), we can rewrite this force as

F scatt ¼ p0

� 1
2�

2

�2 þ �2 þ 1
2�

2
�

�
: (15)

From the upper level population in the steady state of the
optical Bloch equations, one identifies the factor in paren-
theses as the rate of spontaneous scattering by the atom,
showing this force to be the momentum removed per
second from the incident beam by scattering light into
random directions. In other words, Fscatt is the force due
to absorption. In the presence of this force it is practical to
ask whether an experiment could discern the effect of the
dispersive force in order to discriminate between the
Abraham and Minkowski results and test the theory pre-
sented here. When the pulse leaves the atom behind, the
dispersive force on the trailing edge removes the momen-
tum imparted by the leading edge. The final momentum of
the atom therefore measures only the scattering force.
There is however a displacement, which has contributions
from both types of force.
Immediately after the trailing edge of a pulse of duration

�, the two displacements are in the ratio

�xdispersion
�xabsorption

¼ DuE0=c

DvE0k�
¼ �

!

1

��
: (16)

The pulse duration must be long in comparison with � for
our treatment to be valid because we neglect the transient
response of the atom to the changes in the field. Shorter
pulses can certainly be produced in the laboratory, but the
concept of refractive index as used in the Abraham-
Minkowski discussion assumes that the response is pro-
portional to the field and does not depend on its history. We
therefore take it that �� � 1. We can also assume that
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j�j & !. This is rigorously true for red detuning, but it is
also true in practice for blue detuning because light de-
tuned from resonance by more than the transition fre-
quency would have to be unfeasibly intense to generate a
measurable effect and would also be likely to couple more
strongly to higher dipole excitations of the atom. It would
seem, therefore, that both the momentum and the displace-
ment of the atom are substantially dominated by the effects
of radiation pressure, making this an unsuitable way to
determine the sign of the dispersive force on the atom.
However, it should be possible using the method of slow
light [16] to reduce the group velocity of the light to give
the gradient force a much longer time to operate, thereby
enhancing the effect of interest [17]. At the same time this
method can reduce the undesirable spontaneous scattering
rate.

We conclude by noting that the Minkowski and
Abraham momenta differ also in their dependence on the
magnetic field. If our atom has a magnetic-dipole moment
m, then we have B ¼ �0½Hþm�ðr� ratomÞ� and we can
follow the above analysis to find that the Minkowski and
Abraham momenta differ by m�E=c2. As with an elec-
tric dipole, it is the Abraham momentum that is associated
with the kinetic momentum transfer. The difference be-
tween this and the canonical momentum, associated with
the Minkowski momentum, is precisely the interaction
responsible for the Aharanov-Casher effect [18].

In summary, we have discussed the momentum trans-
ferred by a pulse of light to a single two-level atom. When
the light is tuned to the red side of resonance, the dispersive
part of the force repels the atom from the light in contra-
diction to the usual view that red-detuned light will be
attractive. We have shown that the difference arises from a
term d� B in the momentum, which is normally neglected
in the literature of laser cooling and trapping. This led us to
consider the momentum transferred to the light. We have
found that Abraham’s optical momentum corresponds to
the kinetic momentum transfer, whereas the form due to
Minkowski is associated with canonical momentum, the
difference between the two being precisely the d� B
term. We then considered whether this momentum transfer
might be measured in the laboratory. We found that the
effect of the scattering forces always masks that of the
dispersive force on a single two-level atom, but not neces-
sarily in a vapor of many multilevel atoms. Finally, we
noticed that the interaction giving rise to the Aharonov-

Casher effect is exactly the magnetic analog of the electric-
dipole coupling that causes the Abraham-Minkowski dif-
ference discussed here.
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