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It is shown that in nonperturbative massless QED an anomalous magnetic moment is dynamically

induced by an applied magnetic field. The induced magnetic moment produces a Zeeman splitting for

electrons in Landau levels higher than l ¼ 0. The expressions for the nonperturbative Lande g factor and

Bohr magneton are obtained. Possible applications of this effect are outlined.
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The theory of the electron magnetic moment has histori-
cally played an important role in the development of QED.
As is known, the electron intrinsic magnetic moment ~� is
related to the spin vector ~s by ~� ¼ g�B ~s, where �B ¼
e@=2mc is the Bohr magneton, and g is the Lande g factor.
One of the great triumphs of the Dirac relativistic theory
for the electron was the prediction of the value g ¼ 2.
Nevertheless, experimental measurements of the g factor
showed a deviation from this prediction. The solution of
the apparent contradiction came only after Schwinger cal-
culated the first-order radiative correction to ~�, due to the
electron-photon interactions [1]. Schwinger’s results led to
an anomalous magnetic moment with a correction to the g

factor of order ( g�2
2 ¼ �

2� ), � being the fine-structure

constant. Subsequently higher-order radiative corrections
to g have given rise to a series in powers of �=� [2] that is
in excellent agreement with the experiment.

Now, in the case of massless QED, one cannot follow
Schwinger’s approach to obtain the anomalous magnetic
moment. The reason is that an anomalous magnetic mo-
ment would break the chiral symmetry of the massless
theory, but this symmetry is protected against perturbative
corrections. However, the chiral symmetry can be broken
dynamically via nonperturbative effects. In fact, such a
dynamical symmetry breaking has been shown to occur
if the massless electrons interact with the photons in the
presence of a constant magnetic field. This mechanism is
known in the literature [3–7] as the magnetic catalysis of
chiral symmetry breaking (MC�SB). The phenomenon of
MC�SB consists of the formation of a chiral condensate
due to the dimensional reduction in the dynamics of the
fermions in the lowest Landau level (LLL). This dimen-
sional reduction makes the nonperturbative fermion-
antifermion interaction effectively stronger, hence favoring
fermion-antifermion pairing even at weak coupling.

All the previous studies of MC�SB in QED [4,5] fo-
cused on the generation of a fermion dynamical mass.
None of them, however, considered the possibility of a
dynamically generated magnetic moment. In the present
Letter we are going to show that, along with the dynamical
mass, the chiral condensate necessarily produces a dy-
namical magnetic moment. Physically it is easy to under-

stand the origin of the new dynamical quantity. The chiral
condensate carries nonzero magnetic moment, since the
particles forming the condensate have opposite spins and
opposite charges. Therefore, chiral condensation will in-
exorably provide the quasiparticles with both a dynamical
mass and a dynamical magnetic moment. Symmetry argu-
ments can help us also to better understand this phenome-
non. A magnetic moment term does not break any
additional symmetry that has not already been broken by
a mass term. Hence, once MC�SB occurs, there is no
reason why only one of these parameters should be differ-
ent from zero. We will show below that a very important
consequence of the dynamically generated magnetic mo-
ment is a splitting in the electron energy spectrum that can
be interpreted as a nonperturbative Zeeman effect.
To explore the dynamical generation of a magnetic mo-

ment in massless QED, we can start from the Schwinger-
Dyson (SD) equation for the fermion self-energy in the
presence of a constant magnetic field along the Z direction
(F12 ¼ H). We will work in the quenched-ladder approxi-
mation where

�ðx; x0Þ ¼ ie2��Gðx; x0Þ��D��ðx� x0Þ: (1)

Here, �ðx; x0Þ is the electron self-energy operator,
D��ðx� x0Þ is the bare photon propagator, and Gðx; x0Þ is
the full fermion propagator depending on the dynamically
induced quantities and the magnetic field.
To transform to momentum space in the presence of a

magnetic field we can use the so-called Ritus’ method,
originally developed for fermions in [8] and later extended
to vector fields in [9]. In Ritus’ approach, the transforma-
tion to momentum space is carried out using the eigen-
functions El

pðxÞ of the asymptotic states of the charged

fermions in a uniform magnetic field

El
pðxÞ ¼ Eþ

p ðxÞ�ðþÞ þ E�
p ðxÞ�ð�Þ; (2)

where �ð�Þ ¼ ðI � i�1�2Þ=2 are up (þ) and down (�)

spin projectors; Eþ=�
p ðxÞ ¼ Nðl=l� 1Þ expðp0x

0 þ
p2x

2 þ p3x
3ÞDðl=l�1Þð�Þ, withDlð�Þ the parabolic cylinder

functions of argument � ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2jeHjp ðx1 � p2=jeHjÞ, and

NðlÞ ¼ ð4�jeHjÞ1=4= ffiffiffiffi
l!

p
a normalization constant. The in-
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dex l ¼ 0; 1; 2; . . . denotes the Landau levels (LL). The
El
pðxÞ functions (2) play the role in the magnetized medium

of the usual plane-wave (Fourier) functions eipx at zero
field. They satisfy the field-dependent eigenvalue equation

ð� � �ÞEl
pðxÞ ¼ El

pðxÞð� � �pÞ; (3)

with generalized momenta �� ¼ i@� � eA� and �p ¼
ðp0; 0;�sgnðeHÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jeHjlp
; p3Þ.

In momentum space the fermion self-energy is given by

�ðp; p0Þ ¼
Z

dxdy �El
pðxÞ�ðx; yÞEl

pðyÞ

¼ ð2�Þ4�̂ð4Þðp� p0Þ�ðlÞ~�lð �pÞ (4)

since the El
p are precisely linear combinations of the

eigenfunctions of the fermion self-energy in the presence
of a magnetic field [8]. In (4) �El

p � �0ðEl
pÞy�0, and we

used that
R
d4x �El

pðxÞEl0
p0 ðxÞ ¼ ð2�Þ4�̂ð4Þðp� p0Þ�ðlÞ with

�̂ð4Þðp� p0Þ ¼ �ll0�ðp0 � p0
0Þ�ðp2 � p0

2Þ�ðp3 � p0
3Þ and

�ðlÞ ¼ �ðþÞ�l0 þ Ið1� �l0Þ [10].
As proven in [11], in the presence of a magnetic fieldH,

the general structure of ~�lð �pÞ consistent with the Ward-
Takahashi identity in the ladder approximation is

~�lð �pÞ ¼ Zl
kð �p; FÞ� � �pk þ Zl

?ð �p; FÞ� � �p?

þMlð �p; FÞI þ 1
2T

lð �p; FÞ �F��	��: (5)

Here, �F�� ¼ F��=jHj, �p?
� ¼ ð0; 0;�sgnðeHÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jeHjlp
; 0Þ,

and �pk
� ¼ ðp0; 0; 0; p3Þ. The coefficients Ml, Zl, and Tl

depend on the field strength F, LL l and momentum �p.Ml

is the dynamical mass already considered in previous
works on MC�SB [3–7]. Tl corresponds to the dynami-
cally induced magnetic moment and should be found,
along with Ml, from the SD equations. The operator
~�lð �pÞ can be conveniently written, with the help of the

projectors ��
k ¼ 1

2 ð1� �k� �pk
j �pkj Þ, ��

? ¼ 1
2 ð1� i�2Þ, as

~� lð �pÞ ¼ Zl
kð�þ

k ���
k Þj �pkj þ iZl

?ð��
? ��þ

?Þj �p?j
þ ðMl þ TlÞ�ðþÞ þ ðMl � TlÞ�ð�Þ: (6)

Using the El
p transformation, the full fermion propagator

in momentum space is given by

Glðp� p0Þ ¼
Z

dxdy �El
pðxÞGðx; yÞEl0

p0 ðyÞ

¼ ð2�Þ4�̂ð4Þðp� p0Þ�ðlÞ ~Glð �pÞ; (7)

where

~Glð �pÞ¼ 1

� � �p� ~�lð �pÞ
¼NlðT;VkÞ

DlðTÞ �ðþÞ�þ
k þNlðT;�VkÞ

Dlð�TÞ �ðþÞ��
k

þNlð�T;VkÞ
Dlð�TÞ �ð�Þ�þ

k þNlð�T;�VkÞ
DlðTÞ �ð�Þ��

k

� iVl
?ð�þ

?���
?Þ
��þ

k �ðþÞþ��
k �ð�Þ

DlðTÞ

þ��
k �ðþÞþ�þ

k �ð�Þ
Dlð�TÞ

�
(8)

with coefficients

NlðT; VkÞ � Ml � Tl � Vl
k;

DlðTÞ � ðMlÞ2 � ðVl
k þ TlÞ2 þ ðVl

?Þ2;
Vl
k � ð1� Zl

kÞj �pkj;
Vl
? � ð1� Zl

?Þj �p?j ¼ ð1� Zl
?Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeHjl

p
:

(9)

Transforming Eq. (1) to momentum space with the help
of the El

p functions, taking the photon propagator in the

Feynman gauge, D��ðx� x0Þ ¼ R d4q
ð2�Þ4

eiq�ðx�x0 Þ
q2�i"

g��, and

carrying out derivations and approximations similar to
those done in [5], we obtain that the SD equation for
arbitrary Landau level l is given by

~� lð �pÞ�ðlÞ ¼ ie2ð2eHÞ�ðlÞ
Z d4q̂

ð2�Þ4
e�q̂2?

q̂2

�½�k
�
~Glðp� qÞ�k

�

þ �ðþÞ�?
�
~Glþ1ðp� qÞ�?

��ðþÞ
þ �ð�Þ�?

�
~Gl�1ðp� qÞ�?

��ð�Þ�; (10)

where p� q � ðp0 � q0; 0;�sgnðeHÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeHjnp

; p3 � q3Þ
for n ¼ l� 1, l, lþ 1 and the normalized quantities are
defined as Q̂� ¼ Q�=

ffiffiffiffiffiffiffiffiffiffiffi
2jeHp

. Since the equation for a
given Landau level l involves dynamical parameters that
depend on l, l� 1, and lþ 1, the SD equations for all the
LL’s actually form a system of infinite coupled equations.
Fortunately, in the infrared region, the leading contribution
to each equation will come from the propagators with the
lower LL’s, since the magnetic field appearing in the
denominator of the fermion propagator for l � 0 acts as
a suppressing factor. Using this approximation, one can
find a consistent solution at each level. On the other hand,
the solutions for anyMl and Tl can be ultimately expressed
in terms of the LLL solution, indicating that the physical
origin of all the dynamical quantities is actually due to the
infrared dynamics taking place at the LLL. For the LLL
(l ¼ 0) case, the leading contribution to the right-hand side

(rhs) of (10) comes from the ~G0ðp� qÞ term, and we find
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ðM0þT0ÞþZ0
kð�þ

k ���
k Þj �pkj

¼ ie2ð2jeHjÞ�
Z d4q

ð2�Þ4
e�q̂2?

q̂2
ðM0þT0Þ

ð �pk�qkÞ2�ðM0þT0Þ2 : (11)

Equation (11) implies that Z0
k ¼ 0, while for the combi-

nation M0 þ T0 it gives, in the infrared limit (pk � 0),

1 ¼ ie2ð4jeHjÞ
Z d4q̂

ð2�Þ4
e�q̂2?

q̂2
1

ðM0 þ T0Þ2 � q2k
: (12)

IfM0 þ T0 is replaced in (12) by the dynamical mass mdyn

of Refs. [4,5], Eq. (12) turns identical to the gap equation
found there. Hence, the solution of (12) is formally the
same as the one found in [4,5], but with the combination
M0 þ T0 now playing the role previously played only by
the dynamical mass. Hence,

M0 þ T0 ’
ffiffiffiffiffiffiffiffiffiffiffiffi
2jeHj

p
e�

ffiffiffiffiffiffiffi
�=�

p
: (13)

As in [4,5], this solution is obtained considering thatM0 þ
T0 does not depend on the momentum, an assumption
consistent within the ladder approximation [12]. As proved
in [13], when the polarization effect was included in the
gap equation through the improved-ladder approximation,
the solution formdyn was of the same form as (13), but with

the replacement
ffiffiffiffiffiffiffiffiffiffi
�=�

p ! �=� logð�=�Þ in the exponent.
Since the inclusion of the magnetic moment in the LLL SD
equation merely implies the replacement mdyn !
M0 þ T0, it is expected that a similar effect will occur in
the solution (13). However, this effect will not qualitatively
change the nature of our findings.

Since in the LLL propagator G0ðp� p0Þ the dynamical
mass M0 and magnetic moment T0 always enter through
the combination M0 þ T0, the solution of the LLL SD
equation (13) can only determine the sum of these dynami-
cal parameters. This indicates that at the LLL, the effect of
a magnetic moment is irrelevant, it just redefines the rest
energy due to the replacement mdyn ! M0 þ T0. This is

physically natural, since the electrons in the LLL can only
have one spin projection, so for them there is no spin
degeneracy and hence, no possible energy splitting due to
the magnetic moment. E0 ¼ M0 þ T0 represents then a
dynamically induced rest energy. This can be easily seen
considering the Dirac equation for the electrons in the LLL
with dynamically induced parameters,

½ �pk � ~�k � E0�c LLL ¼ 0; (14)

where c LLL is the spin-up two-component wave function.
Equation (14) coincides with the free (1þ 1)-Thirring
model [14], with corresponding gamma matrices ~�0 ¼
	1, ~�3 ¼ �i	2, where 	i are the Pauli matrices. The
dispersion relation of the electrons in the LLL obtained
from (14), p2

0 ¼ p2
3 þ ðE0Þ2, is in agreement with the

above discussion. As we will see below, the interesting
effect associated to T comes from the higher LL’s.

For electrons in the first LL (l ¼ 1), the leading contri-
bution to the rhs of (10) in the infrared limit (pk � 0)

comes from the term containing ~G0ðp� qÞ. Then,
Zð1Þ
? �2ð2jeHjÞþðM1þT1Þ�ðþÞþðM1�T1Þ�ð�Þ

¼ ie2ð4jeHjÞ�ð�Þ
Z d4q̂

ð2�Þ4
e�q̂2?

q̂2
E0

ðE0Þ2�q2k
: (15)

From (15) we obtain the solutions

M1¼�T1¼ 1
2E

0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jeHj=2

q
e�

ffiffiffiffiffiffiffi
�=�

p
; Z1

?¼0: (16)

This result corroborates the relevance of the LLL dynamics
(bothM1 and T1 are determined by E0) in the generation of
the dynamical mass and magnetic moment for electrons in
the first LL. Given that the magnitude of the magnetic
moment for the electrons in the first LL is determined by
the dynamically generated rest-energy of the electrons in
the LLL, any modification of the theory producing an
increase in E0 will, in turn, drive an increase in the magni-
tude of T1. From the experience with the MC�SB phe-
nomenon, such modifications could be, for example,
lowering the space dimension [15], introducing scalar-
fermion interactions [6,12], or considering a nonzero
bare mass [16].
Let us find now the dispersion relations for electrons in

higher LL’s, taking into account the dynamically induced
quantities. Starting from the modified electron equation in
the presence of the magnetic field

½ �p � ��MlI � iTl�1�2�c l ¼ 0; (17)

the dispersion relations are found from

det½ �p ���MlI� iTl�1�2�¼ ½ðMlÞ2�ð �pk�TlÞ2þp2
?�

�½ðMlÞ2�ð �pkþTlÞ2þ �p2
?�

¼0: (18)

yielding

p2
0 ¼ p2

3 þ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMlÞ2 þ 2eHl

q
� Tl�2; (19)

and thus showing that the induced magnetic moment
breaks the energy degeneracy between the spin states in
the same LL.
In particular for l ¼ 1, plugging (16) into (19), taking

into account that M̂1, T̂1 � 1, and Taylor expanding the
term in parenthesis, the dispersion relations can be ex-
pressed as

p2
0 ’ p2

3 þ 2eH þ ðM1Þ2 þ ðT1Þ2 � 2T1
ffiffiffiffiffiffiffiffiffiffi
2eH

p
; (20)

thereby producing an energy splitting

�E ¼ j2T1j ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jeHj=2

q
e�

ffiffiffiffiffiffiffi
�=�

p
: (21)

Expression (21) can be conveniently written in the well-
known form of the Zeeman energy splitting for the two
spin projections

�E ¼ ~g ~�BH; (22)
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where ~g and ~�B are the nonperturbative Lande g factor and
Bohr magneton given, respectively, by

~g ¼ 2e�2
ffiffiffiffiffiffiffi
�=�

p
; ~�B ¼ e

2M1
: (23)

Notice that the Lande g factor depends nonperturbatively
on the coupling constant �, and that the Bohr magneton is
given in terms of the dynamically induced electron mass.

We want to call attention to possible applications of the
dynamically induced Zeeman effect obtained in this Letter.
One area of potential interest is condensed matter, since
recent experiments [17] have shown that the 2-dimensional
crystalline form of carbon, known as graphene, has charge
carriers that behave as massless Dirac electrons. In par-
ticular, a phenomenon where the dynamically induced
Zeeman effect can bring some new light is the lifting of
the fourfold degeneracy of the l ¼ 0 LL, and twofold
degeneracy of the l ¼ 1 LL in the recently found quantum
Hall states corresponding to filling factors � ¼ 0, �1, �4
under strong magnetic fields [18]. Notice that dispersion
relations similar to (19) were found within certain region of
the parameter space in a two-dimensional modeling of
Dirac quasiparticles in graphene with magnetically cata-
lyzed masses and other order parameters connected to
quantum Hall ferromagnetism [19].

Another domain where the finding we are reporting
can be of interest is color superconductivity. An important
aspect of color superconductivity is its magnetic proper-
ties [20–23]. In spin-zero color superconductivity,
although the color condensate has nonzero electric charge,
there is a linear combination of the photon and a gluon
that remains massless, hence giving rise, in both the 2SC
and CFL phases, to a long-range remnant ‘‘rotated-
electromagnetic’’ field [20]. To understand this, notice
that the quarks participating in the pairing are neutral or

have equal and opposite ‘‘rotated’’ ~Q charge. That is, the

condensate is always ~Q neutral. In the case that the pair is

formed by ~Q-charged quarks of opposite sign, although the

condensate is ~Q neutral, an applied magnetic field can
interact with the quarks forming the pair [22]. Hence,
with respect to the ‘‘rotated-electromagnetism’’ the color-
superconducting pair resembles the chiral condensate
under a conventional electromagnetic field. It should be
expected, then, that a nonperturbative Zeeman effect can
also be induced in a color superconductor under an applied
magnetic field. Since, on the other hand, the Meissner
instabilities that appear in some density regions of the color
superconductor can be removed by the induction of a
magnetic field [23], it will be interesting to investigate
what could be the role in this process of a dynamically
induced magnetic moment.
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