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Superconductivity in iron pnictides is studied by using a two-orbital Hubbard model in the large U

limit. The Coulomb repulsion induces an orbital-dependent pairing between charge carriers. The pairing is

found mainly from the scattering within the same Fermi pocket. The interpocket pair scatterings

determine the symmetry of the superconductivity, which is extended s wave at small Hund’s coupling,

and d wave at large Hund’s coupling and large U. The former is consistent with recent experiments of

angle-resolved photoemission spectroscopy and Andreev reflection spectroscopy.
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Superconducting (SC) iron pnictides have the highest
transition temperature next to the cuprates [1–7]. The
parent compounds are metallic spin density wave (SDW)
states [8–11]. Superconductivity occurs when part of the
Fe2þ ions are replaced by Feþ. A multiorbital Hubbard
model may be a starting point to study superconductivity
[12–22]. Since the parent compound is metallic, most
theories examine the SC instability from the weak
Coulomb interaction point of view [13–18]. On the other
hand, the observed magnetic moment in the SDW phase is
large [23], indicating importance of spin couplings. The
dynamic mean field theory [12] also suggests its closeness
to a Mott insulator. This calls for an alternative approach
from the viewpoint of large Coulomb repulsion U, which
will be the purpose of the present Letter.

The electronic states of the compound are predomi-
nantly Fe-3d orbitals near the Fermi surface (FS)
[10,11,24], which is composed of two hole pockets cen-
tered at � ¼ ð0; 0Þ and two electron pockets at X ¼ ð�; 0Þ
and Y ¼ ð0; �Þ, in the unfolded Brillouin zone (BZ), cor-
responding to 1 Fe atom per unit cell. Note that the buck-
ling of As atoms reduces the BZ to the square enclosed by
the dashed lines in Fig. 1. The FS structure can be repro-
duced by a 5-orbital model [14]. The bands near the FS are
mainly dxz and dyz orbitals [24], and the FS in the reduced

BZ can be reproduced by a 2-orbital model, which shifts a
hole Fermi pocket from the �- to theM ¼ ð�;�Þ points in
the unfolded BZ. In this Letter, we use the 2-orbital model
to study the superconductivity at large U limit. We argue
that our qualitative results will remain unchanged due to
the simplification of the 2-orbital model. We find that the
virtual hopping induces orbital-dependent pairings of
charge carriers. The intra-Fermi pocket pair scattering is
strongest, and the pairing symmetry is determined by
interpocket pair scatterings and is extended s wave (s�)
for small Hund’s coupling and d wave for large Hund’s
coupling and large U. The s�- state was proposed by

Mazin et al. [13] based on the analysis of the small
Fermi pockets and spin fluctuations, and was found in
weak coupling or small U approaches [14,15]. Our result
appears consistent with the angle-resolved photoemission
spectroscope (ARPES) [25] and Andreev reflection spec-
troscope [26].
The 2-orbital model reads [20]H ¼ H0 þHI, whereHI

is an on-site Coulomb term, and H0 is a tight-binding
model on a square lattice of Fe atoms,

H0 ¼
X

knm�

ð�nmk ��Þĉykn�ĉkm� ¼ X
k��

�k�ĉ
y
k��ĉk��; (1)

where �nmk is the hopping matrix in k space, n ¼ 1 or 2
denote orbitals dxz (or dyz). � is the chemical potential.

� ¼ � represents the electron or upper (þ) band and the
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FIG. 1 (color online). Fermi surface in the unfolded Brillouin
zone (BZ) of H0. The square enclosed by the dashed lines is the
reduced BZ. The color scheme illustrates weights contributed
from orbitals dxz and dyz. Arrows indicate interpocket pair

scatterings with wave vectors q� ð0; �Þ, (�, 0), and (�, �).
Numerics (positive value: attractive) are the corresponding scat-
tering amplitudes Amm

nn ðqÞ in Eq. (7) in unit of t2=U at J ¼ 0. Not
shown is the intrapocket scattering Ann

nn½q� ð0; 0Þ� ¼ 20t2=U.
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hole or lower (�) band, corresponding to the diagonal-
ized energy �k�. The band and orbital representations
are related by a unitary transformation, ĉkn� ¼P

�¼�un�ðkÞĉk��. Here we follow Ref. [20] and parame-
trize H0 by hopping integrals tnm~� between two sites i and
j ¼ iþ ~�, which is the Fourier transform of �nmðkÞ. We set
t11x̂ ¼ t22ŷ ¼ t1, t

11
ŷ ¼ t22x̂ ¼ t2, t

nn
x̂�ŷ ¼ t3, and t12x̂�ŷ ¼ �t4

by lattice and orbital symmetry.
By choosing t1 ¼ �t, t2 ¼ 1:3t, t3 ¼ t4 ¼ �0:85t, the

calculated FS with electron density per site � 2:10 is
reproduced in Fig. 1, which is similar to the first principle
calculations [13,20] for LaFeAsO. The weight contributed
from each orbital at the FS is illustrated in the figure. The
state on the electron pocket around the X (Y) is mainly
from dyz (dxz) orbital. The state on the hole pocket around

the � consists of dyz and dxz orbitals equally if k is along

the diagonals, and mainly from dxz (or dyz) orbital if along

the x or y axis.
The on-site interaction

HI ¼
X

i;m¼1;2

½Un̂im"n̂im# þ Jĉyim"ĉ
y
im#ĉi �m#ĉi �m"�

þ X
i;��0

½U12n̂i1�n̂i2�0 þ Jĉyi1�ĉ
y
i2�0 ĉi1�0 ĉi2�� (2)

where n̂im� ¼ ĉyim�ĉim�, U and U12 are the intra- and
interorbital direct Coulomb repulsions, respectively. The
terms with J are the exchange interaction. By symmetry,
U ¼ U12 þ 2J. [27] In the limit, U � t, each lattice site is
doubly occupied in the parent compound. Upon electron
doping, some sites will have 3 electrons (or 1 hole). A
single hole at site i may interchange with a two-hole state
at site j, leading to a metallic phase. The effective inter-
action between two single holes on neighboring sites (i, j)
can be derived by using second order perturbation theory,
and it is given by

H2 ¼ �X
ij

X
nmn0m0

½Am0n0
nm ðijÞb̂ynmðijÞb̂n0m0 ðijÞ

þX
Sz

Bm0n0
nm ðijÞT̂Szy

nm ðijÞT̂n0m0
Sz

ðijÞ� (3)

where Sz ¼ �1, 0, 1, and

Am0n0
nm ðijÞ ¼

�ð�1Þmþm0

U� J
þ 1

Uþ J

�
tnmij tm

0n0
ji þ tn �m

ij t �m
0n0

ji

U12 þ J

Bm0n0
nm ðijÞ ¼ ð�1Þmþm0

U12 � J
tn �m
ij t �m

0n0
ji ;

(4)

where �m refers to the conjugate orbital of m, and the first
and second terms in H2 are the pairing interactions in
the spin-singlet and triplet channels, respectively. The

spin-singlet pair operator b̂nmðijÞ¼ ð1= ffiffiffi
2

p Þðĉin"ĉjm# �
ĉin#ĉjm"Þ, and the spin triplet pair operators TSz can be

written similarly. In Eq. (3) and formalism hereafter, we
use hole notation. The results plotted in all the figures,
however, will be in the electron convention. Castellani

et al. [27] studied the spin-spin coupling for a twofold
orbital degenerate Hubbard model in the context of
V2O3. Our expression here is equivalent to theirs, although
the pairing forms were not explicitly given in their formal-
ism. The spin triplet states become important at J=U !
1=3, or J ! U12, which can be seen clearly from the term
in B. Below we focus on the spin-singlet state with even
parity, which is energetically more favorable for J=U not
so large. The pairing interaction between carriers derived
in the large U limit should be relevant to the intermediate
coupling region [28].
The effective Hamiltonian is then Heff ¼ H0 þH2, sub-

ject to the constraint of no more than 2 holes per site. This
can formally be represented by a Gutzwiller projection
operator to project all the unphysical states, similar to
that in the t-J model [29]. Heff may be studied by using a
renormalized Hamiltonian approach to take into account
the projection [30] by introducing renormalization factors,
gt for H0 and g2 for H2, both are doping dependent. For a
given doping, the effect of the renormalization is to scale
all the t0s to gtt

0s, and (U, J) to ðg2t =g2ÞðU; JÞ. Below we
will absorb these renormalization factors into the parame-
ters (t0s and U) and effectively set gt ¼ g2 ¼ 1 in our
calculations.
Heff can then be solved using a mean field theory by

introducing mean fields for the spin-singlet pairing with

even parity and symmetric orbitals [31], �nmð ~�Þ ¼
�mnð ~�Þ ¼ 1ffiffi

2
p hb̂nmði; iþ ~�Þi, with ~� ¼ �x̂, �ŷ, �ðx̂� ŷÞ.

By symmetry, depending on s� (A1g) or d wave (B1g)

states, we have �11ðx̂Þ ¼ ��22ðŷÞ, �11ðŷÞ ¼ ��22ðx̂Þ,
�12ðx̂Þ ¼ �12ðŷÞ ¼ 0, �11ðx̂� ŷÞ ¼ ��22ðŷ� x̂Þ,
�12ðx̂þ ŷÞ ¼ ��12ðx̂� ŷÞ. Note that �12ðx̂� ŷÞ ¼ 0 for
the d wave state. The pairing strength with A2g and B2g

symmetries [31] are found very tiny, and will not be dis-
cussed further [32]. The mean field Hamiltonian of Heff

can be written as

HMF ¼ X
k

ĉ y
k

�k VðkÞ
VyðkÞ ��k

� �
ĉ k; (5)

where ĉ y
k ¼ ðĉykþ"; ĉ

y
k�"; ĉ�kþ#; ĉ�k�#Þ. VðkÞ is a 2� 2

matrix in band picture, given by
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FIG. 2 (color online). Energy per site of Heff in s� state (red
solid line) and d wave state (blue dashed line) for (a) t=U ¼ 0:1
and (b) t=U ¼ 0:2.
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V��ðkÞ ¼
X

nmm0n0;�
Am0n0
nm ð ~�Þ�	

nmð ~�Þeik
 ~�um0�ðkÞun0�ðkÞ:

HMF can be solved self-consistently, and the energy per site
is E ¼ � 1

N

P
k;�E�ðkÞ, with E�ðkÞ the quasiparticle en-

ergy of the upper (þ ) and lower (� ) bands, given by

E�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þ þ V2þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w4� þ V2þ�½ð	�Þ2 þ 4 �V2�

qr
;

(6)

where 	� ¼ �þ � ��, �V ¼ ½Vþþ þ V���=2, and w2� ¼
½�2þ þ V2þþ � ð�2� þ V2��Þ�=2, and the k dependence is
implied. In Fig. 2, the energies of the SC states are depicted
as functions of J=U for t=U ¼ 0:1 and t=U ¼ 0:2. At
t=U ¼ 0:2, the s� state is always energetically favorable.
At t=U ¼ 0:1, the ground state is s� wave if J=U < 0:16
and a d wave if J=U > 0:16.

In Fig. 3, we plot the intraband pairing amplitude
VþþðkÞ for the electron band and V��ðkÞ for the hole
band. In the s� state, VðkÞ is invariant under a �=2
rotation, and VþþðkÞ and V��ðkÞ have a nodal line in
the BZ. Vþþ have the same sign on X and Y pockets, but
are opposite to V�� on �. In the d wave state, V��ðkÞ
changes a sign under a �=2 rotation, and has nodal lines
along the diagonals in the BZ.

Let us examine the pairing strength at the FS around the
Fermi pockets Y and �. For a Fermi wave vector kF on the
Fermi pocket centered at C ¼ ðkcx; kcyÞ, we define an angle


 ¼ arctanðkFy � kcyÞ=ðkFx � kcxÞ. The 
 dependences of

VðkÞ are plotted in Fig. 4. For the s� state, jVþþj �
jVþ�j, jV��j on Y pocket. This suggests that the SC
pairing is mainly due to the electron pairing of the same
orbital. At the pocket centered at �, Vþ� is negligibly
small, so that the SC pairing is mainly due to the hole
pairings. We emphasize that although there are nodal lines,
Vþþ on pocket Y and V�� on pocket � are always finite.
The quasiparticle energy on the Fermi pockets are given by
E�ðkÞ, which are shown in Fig. 4(e). There is a full gap on
both Fermi pockets around Y and �, consistent with recent
ARPES and Andreev reflection spectroscope results.
Because of the above analyses, we have E�ðkÞ �
VþþðkÞ around Y and E�ðkÞ � V��ðkÞ around �. The
results for the d wave state are also shown in Fig. 4. The
nodal line of V��ðkÞ crosses the hole Fermi pocket and
leads to a d wave like quasiparticle spectrum. The quasi-
particle energy at the nodal point is given by Ek ¼
V2þ�ðkÞ=EþðkÞ. Since Vþ�ðkÞ � 0, but small, Ek is non-
zero but very tiny [not distinguishable from 0 in Fig. 4(f)].
To better understand the SC pairing and its symmetry

found above, we examine the pair scatterings in the orbital
representation (intra- and interorbitals) near the Fermi
pockets. The spin-singlet pairing interaction in H2 can be
written as
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FIG. 3 (color online). Intraband pairing amplitude V�;� for s�
(left) and d wave (right) symmetry states. Upper panels (a),
(b) electron band, middle panels (c),(d) hole band. Fermi sur-
faces are indicated by the black lines. Lower panels (e),
(f) relative sign of the pairing amplitudes and order parameters
around Fermi pockets.
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FIG. 4 (color online). Angle dependence of pairing amplitude
VþþðkÞ (red or gray line), V��ðkÞ (blue or dark gray line), and
Vþ�ðkÞ (green or light gray line) along the Fermi pocket around
Y (�) in the s�-state [panel (a)/(c)] and the d wave state [panel
(b)/(d)]. (e) and (f): the quasiparticle gap on the electron Fermi
pocket (red or gray line) and hole Fermi pocket (blue or dark
gray line) for s� and d wave states.
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Horb
2 ¼ � 1

N

X
kk0;nmm0n0

Am0n0
nm ðqÞb̂ynmðkÞb̂n0m0 ðk0Þ; (7)

with q ¼ k� k0, b̂nmðkÞ ¼ ð1= ffiffiffi
2

p Þhĉkn"ĉ�km# �
ĉkn#ĉ�km"i. Am0n0

nm ðqÞ is the Fourier transform of Am0n0
nm ðijÞ.

Horb
2 describes the pair scattering processes between two

pairs of electrons with momentum (k;�k) and (k0;�k0).
Much of physics may be gained by examining the orbital

diagonal term b̂nnðkÞ. Denote ~Ann0 ðqÞ ¼ An0n0
nn ðqÞ, with

q ¼ ðqx; qyÞ, we find

~A11ðqÞ ¼
4Uðt21cx þ t22cyÞ

U2 � J2
þ

�
1

Uþ J
þ 2

U� J

�
4t23cxcy;

~A22ðqÞ ¼ A11ðqy; qxÞ;
~A12ðqÞ ¼ 4

Uþ J
t23cxcy �

4J

U2 � J2
t1t2ðcx þ cyÞ; (8)

where cx ¼ cosqx, cy ¼ cosqy, and we have set t4 ¼ t3 for

simplicity. Since we have small Fermi pockets, the pair
scattering wave vectors are q � ð0; 0Þ within the same
pocket, and q � ð�; 0Þ or (0, �) between the pockets �
and X or Y, and q � ð�;�Þ between the pockets X and Y,
as illustrated in Fig. 1. From Eq. (8), we find that the

intrapocket pair scatterings are always attractive [ ~Að0; 0Þ>
0], and strongest between the same orbital, and the pair
scatterings between hole and electron pockets are always

repulsive [ ~Að0; �Þ< 0]. The pair scattering between the
two electron pockets at X and Y points is mainly between

two different orbitals, and ~A12ð�;�Þ is attractive at small
J=U, and repulsive at large J=U. This qualitatively ex-
plains the relative signs in the order parameters among
the different Fermi pockets in both s� and d wave states
as shown in Fig. 3. The scattering amplitudes in the case
J ¼ 0 are shown in Fig. 1, which is of s� symmetry.

We have used Eq. (7) and (8) to examine the effect to the
superconductivity due to the simplification of the 2-orbital
model, which results in the shift of a hole Fermi pocket
from the � to M point. We have found that the qualitative
physics obtained from our study of the 2-orbital model
remains the same except the parameter space for the ex-
tended s wave state is enlarged when more accurate band
structure is considered. To further ensure the qualitative
conclusions of our theory, we have examined a 3-orbital
model as in Ref. [18], in which there are two hole pockets
around � in the unfolded BZ, which is better in agreement
with the local-density approximation calculations. We
have extended our analyses of Eq. (7) to that model and
the pairing symmetries are found essentially the same as
from the 2-orbital model.

In summary we have examined superconductivity in iron
pnictides using a 2-orbital Hubbard model at the large U
limit. An extended s wave pairing is found most stable in a
large parameter space, consistent with early theories start-
ing with weak coupling (small U) and with ARPES [25]

and tunneling experiments [26]. Contrary to some of weak
coupling theories, we find that the pairing is mainly from
the pair scattering within the same Fermi pocket. Our
analyses suggest some similarities between the supercon-
ductivity in iron pnictides and in the cuprates.
We wish to acknowledge the partial support from RGC

grant of HKSAR and from Swiss National Foundation
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