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We discuss the behavior of a two-level system coupled to a quantum dot contacted by superconducting

source and drain electrodes, representing a simple model for the conformational degree of freedom of a

molecular dot or a break junction. The Josephson current is shown to induce conformational changes,

including a complete reversal. For small bias voltage, periodic conformational motions induced by

Landau-Zener transitions between Andreev states are predicted.
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The remarkable recent progress in the fabrication and
experimental study of transport through ultrasmall nano-
scopic devices, break junctions, or molecules (in the fol-
lowing termed ‘‘quantum dot’’ or simply ‘‘dot’’) [1] has
stimulated renewed interest in the Josephson effect [2],
where the Josephson current through a dot contacted by
superconducting electrodes with phase difference ’ is the
relevant observable. The full current-phase relation has
been measured in various systems, and electron-electron
interactions on the dot were shown to be important [3],
as expected from theory [4]. The already achieved wide
tunability (via gate electrodes) and impressive control
over Josephson currents through nanoscale dots indi-
cate that experiments should be able to also probe modi-
fications of the supercurrent due to the coupling of the dot
to another quantum system (e.g., a spin or a side-coupled
dot). Many previous efforts have focused on studying the
coupling to the spin degree of freedom in molecular mag-
nets [5], which is also related to issues appearing for
superconductor-ferromagnet-superconductor structures
[6]. Theoretical work has also discussed the effects of local
vibration modes on the supercurrent, where the dot is
coupled to a boson mode (phonon) [7,8].

Surprisingly, so far the effects of a two-level system
(TLS) coupled to the dot have not been addressed, except
for normal-conducting leads. This is an important question,
since, for instance, two conformational configurations of a
molecule may represent the TLS degree of freedom.
Experimental results for molecular dots or break junctions
(with normal leads) were interpreted along this line [9–12],
but a TLS can also be realized for a side-coupled double-
dot system in the Coulomb blockade regime [13]. For
concreteness, we here refer to the TLS states �z ¼ �1 as
the two distinct conformational states of a molecular dot,
where �z couples to the dot’s charge. A coupling of the
TLS to the dot’s spin does not have a significant effect on
the phenomena of interest here (see below). (In any case,
spin effects have been addressed in different contexts
previously [5].) Our theory indicates that by variation of
the phase ’, the TLS state can be significantly affected
over a wide parameter regime, including a complete re-
versal of the conformational configuration. This remark-

able effect allows for the dissipationless control (including
switching) of the conformational degree of freedom (�z)
in terms of the phase difference ’, which can be tuned
experimentally by embedding the device in a SQUID
geometry [3]. Conversely, changing the conformational
state will affect the Josephson current in a distinct manner.
Moreover, when applying a bias voltage, a periodic con-
formational motion is triggered via the ac Josephson effect
involving Landau-Zener (LZ) transitions between Andreev
states. Our predictions (both for zero and finite bias) can be
tested experimentally for a wide class of molecules electri-
cally contacted in a break junction setup. Related experi-
ments, reporting TLS behavior due to a conformational
variable, have been published for normal leads [9]. For
normal leads, the model employed below has also been
motivated in a recent theoretical work [12]. Available
parameter estimates for dot and TLS energy scales [9,12]
suggest that the predicted phenomena can be observed
using existing state-of-the-art experiments. Detection
schemes to read out the conformational state are also
available, e.g., by single-molecule force microscopy [14].
We study a spin-degenerate molecular dot level with

single-particle energy �d and on-site Coulomb repulsion
U > 0, coupled to the TLS and to two superconducting
banks (leads). Employing the standard wide-band approxi-
mation for the leads, we assume a symmetric situation [15],
where the banks are modeled as identical s-wave BCS
superconductors with gap � and the dot-lead hybridiza-
tions are equal, �L ¼ �R ¼ �=2. The TLS describing the
conformational state corresponds to Pauli matrices �x;z,

with bare energy difference E0 and tunnel matrix element
W0 between the two states. The Hamiltonian is H ¼ H0 þ
Htun þHleads, where the coupled dot-plus-TLS part is (we
set e ¼ @ ¼ kB ¼ 1)

H0¼�E0

2
�z�W0

2
�xþ

�
�dþ�

2
�z

�
ðn" þn#ÞþUn"n#;

(1)

with the occupation number ns ¼ dys ds for the dot fermion
ds with spin s ¼" , # , Hleads describes standard BCS
Hamiltonians, ’ can be included by phase factors in the
tunnel Hamiltonian Htun [8], and we define the renormal-
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ized dot level � ¼ �d þU=2. In Eq. (1), the TLS couples
with strength � to the charge on the dot, which can be
rationalized in simple terms by assuming a one-
dimensional effective reaction coordinate X describing
conformations of the molecule. The dominant coupling
to the electronic degrees of freedom is then (as for pho-
nons) of the form / Xðn" þ n#Þ [7–10]. In the limit of

interest, the potential energy VðXÞ is bistable with two
local minima, and a truncation of the low-energy dynamics
of X to the lowest quantum state in each well leads to
Eq. (1). For a detailed derivation, see also Ref. [12].

When dealing with the equilibrium problem, it is con-

venient to work with Nambu spinors dð�Þ ¼ ðd"; dy# Þ in

imaginary time �. The lead fermions can then be inte
grated out exactly, and the partition function is Z ¼
Trðe�H0=TT e�

R
d�d�0dyð�Þ�ð���0Þdð�0ÞÞ, where the trace ex-

tends over the dot-plus-TLS degrees of freedom only, T
denotes time ordering, and the effect of the BCS leads is
contained in the 2� 2 Nambu self-energy matrix �ð�Þ,
whose Fourier transform is [4]

�ð!;’Þ ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ �2

p �i! �cosð’=2Þ
�cosð’=2Þ �i!

� �
: (2)

We mostly consider zero temperature, T ¼ 0, where both
the Josephson current Ið’Þ through the dot and the expec-
tation value S ¼ h�zi of the conformational state follow
from the ground-state energy Egð’;E0Þ according to

Ið’Þ ¼ 2
@Eg

@’
; Sð’Þ ¼ �2

@Eg

@E0

: (3)

Later on the formalism will be extended along the lines of
Refs. [16,17] to allow for the description of a small bias
voltage V as well.

Let us first illustrate our central findings when both the
charging energy U and the tunnel splitting W0 are very
small. Later on we show that for sufficiently smallU <Uc,
finite U has no effect. The ground-state energy Eg ¼
minðEþ; E�Þ then follows from the energies E� ¼ �ð��
E0Þ=2� �A�ð’Þ for fixed conformational state � ¼ � with
dot level �� ¼ �þ ��=2. With Eq. (2) and �z ¼
diagð1;�1Þ, the Andreev state energy for arbitrary �=�
follows from

�A�ð’Þ¼�A�ð0Þþ
Z d!

2�
ln
det½i!��z����ð!;’Þ�
det½i!��z����ð!;0Þ� : (4)

In the limits � � � and � � �, this yields [2]

�A�ð’Þ¼��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�T �sin

2ð’=2Þ
q

; ��¼
8<
:

�
1þ�=� ���
�ffiffiffiffiffiffi
T �

p ���;

(5)

with the normal transmission probability T � ¼
½1þ �2�=�

2��1. As long as Eþ < E� (E� < Eþ), we
have Sð’Þ ¼ þ1ð�1Þ, i.e., the conformational state � ¼
þð�Þ is realized, with ideal (perfect) switching when the

bands Eþð’Þ and E�ð’Þ cross at some phase 0<’� <�.
Hence a necessary condition for switching follows: one of
the two inequality chains (with R� ¼ 1�T �)

�þ
ffiffiffiffiffiffiffiffiffi
Rþ

p ���
ffiffiffiffiffiffiffiffiffi
R�

p
+ �� E0 + �þ � �� (6)

must be obeyed. If the dot level is close to a resonance,
�þ � 0 or �� � 0, the reflection probabilities Rþ and
R� are significantly different, and Eq. (6) holds over a
wide parameter range. Then Eq. (3) yields

Ið’Þ ¼ e�Sð’Þ
2@

T Sð’Þ sinð’Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�T Sð’Þsin2ð’=2Þ

q : (7)

In the regime (6), the transmission amplitude switches
between T þ and T � when ’ ¼ ’�. This implies non-
standard current-phase relations, as shown in the upper
inset of Fig. 1.
Having established the basic phenomenon, we now ad-

dress the effects of finite U and/or tunneling W0. Progress
can be made in the limits � � � and � � �. Let us start
with the case when � is the largest energy scale of rele-
vance. Then the dynamics is always confined to the subgap
regime (Andreev states), and quasiparticle tunneling pro-
cesses from the leads (continuum states) are negligible.
Technically, Eq. (2) can then be replaced by

�ð�Þ ¼ � cosð’=2Þ�ð�Þ 0 1
1 0

� �
;

and the problem is equivalently described by the effective
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FIG. 1. Conformational state Sð’Þ ¼ Sð�’Þ vs superconduc-
tor’s phase difference ’. Results from Eq. (10) for � � � are
shown for tunnel amplitudes W0 ¼ 0 (dotted line) and W0 ¼
0:04� (solid line), with � ¼ � ¼ �=2 and E0 ¼ 0:14�. The
dashed curve gives the exact result for W0 ¼ 0 and � ¼ 5�
[see Eq. (4)] extended to finite temperature T ¼ 0:01�. The
upper inset shows the corresponding Josephson current-phase
relations. The lower inset is the same as the main figure but for
� ¼ 4� with � ¼ 2� ¼ �=2 and E0 ¼ 0:45�. The dotted
(solid) curve is obtained from the � � � effective Hamiltonian
(13) with W0 ¼ 0 (W0 ¼ 0:04�). The exact result for W0 ¼ 0 is
shown as a dashed curve for T ¼ 0:01�.
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Hamiltonian Heff ¼ H0 þ � cosð’=2Þðd#d" þ dy" d
y
# Þ. The

resulting Hilbert space can be decomposed into orthogonal
subspaces, H ¼ H A �H S, where the Andreev sector
H A is spanned by the zero- and two-electron dot states j0i
and j2i ¼ dy" d

y
# j0i (and, of course, by the conformational

TLS states), while H S is spanned by the one-electron

states jsi 	 dys j0i. For convenience shiftingHeff ! Heff �
�, the single-particle sector has a pair of doubly degenerate

eigenenergies � U
2 � �S with �S ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0 � �Þ2 þW2

0

q
,

whereas the Andreev sector is described by

HA
eff ¼

�� E0

2
�z �W0

2
�x þ �

2
�z�z þ ��z

þ � cosð’=2Þ�x (8)

with Pauli matrices �x;z acting in fj2i; j0ig subspace. If the
ground state of Heff lies in the Andreev sector, the
Josephson current can be nonzero, while otherwise I ¼ 0
due to the ’ independence of the single-particle sector. For
sufficiently strong interactions, U >Ucð’Þ, the ground
state of Heff is in the single-particle sector H S. This is
indicative of a quantum phase transition to the magnetic
�-junction regime [4]. While this regime is outside the
scope of Eq. (8) (since continuum states are not included),
we have confirmed this scenario by a perturbative calcu-
lation expanding in � for the full model. For � ! 0, we

find Uc ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2cos2ð’=2Þp

; see Eq. (5) for � � �.
Note that � and hence Uc can in principle be tuned by a
gate voltage. For � � maxðjE0j; j�j;�Þ, we instead find
Uc ¼ �. Because HA

eff is independent of U (up to the shift

� ¼ �d þU=2), a weak interaction U <Uc has no effect,
and in what follows we set U ¼ 0. Since a coupling of the
TLS to the dot’s spin involves only the ’-independent
subspace H S, such couplings are also of little relevance
for switching, in accordance with the small polar displace-
ments predicted for spins in a Josephson junction [5].

Physical observables can then be computed from HA
eff in

Eq. (8). The eigenenergies are roots to the exactly solvable
quartic equation

E4 � 2�2E
2 þ�1Eþ�0 ¼ 0; (9)

with coefficients �2 ¼ �2A þ �2S þ �2=4, �1 ¼ 2��ðE0 �
�Þ, and �0 ¼ ð�2A � �2S þ �2=4Þ2 � �2ð�2 �W2

0=4Þ. The
lowest lying of the four roots yields the exact but lengthy
result for the ground-state energy Eg. Convenient expres-

sions for Sð’Þ and Ið’Þ in Eq. (3) follow by taking the
respective derivatives directly in Eq. (9). For instance, with
�0

i ¼ @�i=@E0, the conformational variable reads

Sð’Þ ¼ � 2�0
2E

2
g ��0

1Eg ��0
0

2EgðE2
g ��2Þ þ�1=2

: (10)

Typical results for Sð’Þ and Ið’Þ are shown in Fig. 1. The
most efficient way to induce conformational changes, in-
cluding a complete (symmetric) reversal S ! �S, is
achieved in the weak-coupling regime � 
 �A, where the

four roots to Eq. (9) can be simplified to

E�;� ¼ ��Að’Þ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

0 þ f�½1� �=�Að’Þ� � E0g2
q

;

(11)

with ground-state energy Eg ¼ E��. Remarkably, Eq. (11)

remains accurate even for � � �A. A complete reversal is
achieved when tuning E0 or � such that E0 ¼ �½1�
sgnð�Þ� �F with F ¼ � �

2 sgnð�Þ½1� j�j=�Að0Þ�. In that

case, Sð0Þ ¼ �Sð�Þ ¼ F =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

0 þF 2
q

. When comparing

to the W0 ¼ 0 result, we observe that a finite tunnel am-
plitude W0 only leads to a rounding of the transition and a
decrease in the switching amplitude, but it does not destroy
the effect. Finally, with Eq. (11), the Josephson current in
the weak-coupling limit is

Ið’Þ ¼ �2 sin’

2�Að’Þ
�
1þ ��

2�2Að’Þ
Sð’Þ

�
: (12)

Next we briefly discuss the opposite limit within a
similar truncation scheme, setting U ¼ 0. For � � �
and ’ � 2�n (integer n), the relevant subgap dynamics
is again captured by an effective two-level Hamiltonian
describing the Andreev states [18], coupled to the confor-
mational TLS. With Pauli matrices �x;y;z in Andreev level

subspace and the notation [see Eq. (5)]

H� ¼ ��e
�i�y

ffiffiffiffiffiffi
R�

p
’=2½ ffiffiffiffiffiffiffiffi

R�

p
sinð’=2Þ�z þ cosð’=2Þ�x�;

the effective Hamiltonian follows in TLS space as

Heff ¼
��E0

2 þHþ �W0

2

�W0

2 � ��E0

2 þH�

 !
: (13)

Physical observables are then easily obtained; see the
lower inset of Fig. 1. Again the qualitative features of the
W0 ¼ 0 solution persist.
The effective Hamiltonian (8) for � � � also allows

study of the voltage-biased junction with V 
 �, where
the superconducting phase difference is time dependent,
’ðtÞ ¼ 2Vt. During the time evolution induced by’ðtÞ, the
Andreev and single-particle Hilbert subspaces H A and
H S remain decoupled and mutually orthogonal. The
task is therefore reduced to solving the time-dependent
Schrödinger equation i@t�ðtÞ ¼ HA

effðtÞ�ðtÞ, where �ðtÞ
is a 4-component wave function representing the two
Andreev states and the TLS, and HA

effðtÞ is given by

Eq. (8) with ’ ! 2Vt. For this description to hold at finite
�, the escape rate � of Andreev state quasiparticles into the
continuum states of the leads should be negligibly small.
The rate � follows from the tunneling self-energy; see
Ref. [17] for the opposite limit � � �. For � ¼ 0, we find

� ’ � exp

�
� 2�

V
½lnð2�=�Þ � 1�

�
; (14)

leading to exponentially small rates for realistic system
parameters throughout the regime � � �. Numerical so-
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lution of the time-dependent Schrödinger equation leads to
the results in Fig. 2. They can be understood in terms of the
four eigenenergies (11). For small V, the time evolution is
basically adiabatic, and the LZ probability is very small.
The left panels in Fig. 2 show such an adiabatic evolution
involving time-periodic level crossings of the bands E��
and E�þ in Eq. (11), thereby explaining the existence of
two different supercurrent oscillation amplitudes. The
‘‘noisy’’ features in SðtÞ are fully reproducible and reflect
a superposition of almost filled and almost empty levels.
There are no LZ transitions in that limit, but only a con-
tinuous change of energy bands at the branching times
where E�� ¼ E�þ. However, for larger V=�, the LZ
probability becomes sizeable and the dynamics is more
complex, generally involving a dynamical population of all
four subgap states. The right panels in Fig. 2 display the
case of relatively large V, where the system oscillates due
to LZ transitions between the levels E�� and Eþ�. The
frequency !S of the SðtÞ oscillations is much slower than
the Josephson frequency !J ¼ 2eV=@ and determined by
the lowest interlevel transition energy, !S ¼ minðEþ� �
E��Þ. Note that !S reappears in the ac Josephson current.

To conclude, we predict that the conformational degree
of freedom (represented by a TLS) in a superconducting
molecular dot or break junction responds in a dissipation-
less manner to variations of the phase difference ’ across
the dot or junction, including a complete reversal. This
effect should be observable using existing experimental
methods over a wide parameter range. Under an applied
voltage, this effect leads to quasiperiodic TLS dynamics
due to the time-dependent occupation probabilities of
Andreev states.
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FIG. 2. Time dependence of S (upper row) and ac Josephson
current I (lower row). The left panels show the adiabatic evolu-
tion for low voltage, V ¼ 0:01�. Parameters are the same as for
the solid curve in the main panel of Fig. 1. The right panels are
for V ¼ 5� with �=� ¼ 0:2 (solid line) and 0.6 (dashed line,
current not shown). Other parameters are � ¼ �=2 and E0 ¼
W0 ¼ 0:2�.
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