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The thermal and mechanical stability of graphene is important for many potential applications in

nanotechnology. We calculate the temperature dependence of the lattice parameter, elastic properties, and

heat capacity by means of atomistic Monte Carlo simulations that allow us to go beyond the quasihar-

monic approximation. We predict an unusual, nonmonotonic, behavior of the lattice parameter with a

minimum at T � 900 K and of the shear modulus with a maximum at the same temperature. The Poisson

ratio in graphene is found to be small � 0:1 in a broad temperature interval.
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Understanding the structural and thermal properties of
two-dimensional (2D) systems is one of the challenging
problems in modern statistical physics [1]. Traditionally, it
was discussed mainly in the context of biological mem-
branes and soft condensed matter. The complexity of these
systems hindered any truly microscopic approach based on
a realistic description of interatomic interactions. The dis-
covery of graphene [2], the first truly 2D crystal made of
just one layer of carbon atoms, provides a model system for
which an atomistic description becomes possible. The
interest for graphene has been triggered by its exceptional
electronic properties (for a review, see [3–5]), but the
experimental observation of ripples in freely hanged gra-
phene [6] has initiated a theoretical interest also in the
structural properties of this material [7,8]. Ripples or bend-
ing fluctuations have been proposed as one of the dominant
scattering mechanisms that determine the electron mobility
in graphene [9]. Moreover, the structural state influences
the mechanical properties that are important in themselves
for numerous potential applications of graphene [10–12].

Two-dimensional crystals are expected to be strongly
anharmonic due to an intrinsic bending instability coupled
to in-plane stretching modes. This coupling is crucial to
prevent crumpling of the crystal and stabilize the flat phase
[1]. These expectations have been confirmed by atomistic
simulations for graphene showing very strong bond length
fluctuations already at room temperature [7]. Beside the
relevance for 2D systems, anharmonicity [13] is of general
importance in condensed matter in relation to structural
phase transitions [14,15], soft modes in ferroelectrics [16],
melting [17], and related phenomena. Usually, anharmo-
nicity in crystals is weak enough and thus can be well
described in the framework of perturbation theory [13,18–
20]. However, this might not be the case for strongly
anharmonic systems, such as graphene. Atomistic simula-
tions offer the possibility to study anharmonic effects for a
specific material without the need of perturbative schemes.
For carbon, a very accurate description of energetic and
thermodynamic properties of different allotropes including
graphene [7,21] is provided by the empirical bond order
potential LCBOPII [22]. Here we present the temperature

dependence of thermodynamical and elastic properties of
graphene, calculated by means of atomistic Monte Carlo
(MC) simulations based on LCBOPII.
We performMC simulations at finite temperature T with

periodic boundary conditions for a sample of N ¼ 8640
atoms with an equilibrium size at zero temperature of
147.57 Å in the x direction and 153.36 Å in the y direction.
We equilibrate the sample in theNPT ensemble at pressure
P ¼ 0 for at least 2� 105 MC steps (1 MC step corre-
sponds to N attempts to a coordinate change) which we
found to be enough for convergence of total energy and
sample size. Further, 105 MC steps are used to evaluate the
average lattice parameter a, average nearest neighbor dis-
tance Rnn, and radial distribution function gðRÞ. The dif-

ference ða� ffiffiffi

3
p

RnnÞ characterizes deviations from
planarity.
Figure 1 shows that a and Rnn decrease with increasing

temperature up to about 900 K, yielding a negative thermal
expansion coefficient � ¼ ð�4:8� 1:0Þ � 10�6 K�1 in
the range 0–300 K. As noted in Ref. [23], this anomaly is
due to a low-lying bending phonon branch [24]. Our results
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FIG. 1 (color online). Temperature dependence of the lattice
parameter a (solid blue line) and nearest neighbor distance Rnn

(dashed red line). The scales of left (a) and right (Rnn) y axes are
related to each other by

ffiffiffi

3
p

. At T ¼ 0, a ¼ 2:4595� 10�10 m.
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are in agreement up to 500 K with those of Mounet and
Marzari [23], who used the quasiharmonic approximation
with phonon frequencies and Grüneisen parameters calcu-
lated by the density functional approach. However, at
higher temperatures our results are qualitatively different,
since in Ref. [23] � remains negative in the whole studied
temperature interval up to 2200 K, whereas we find that it
changes sign and becomes positive at T � 900 K. This
discrepancy with the quasiharmonic theory, which in gen-
eral works reasonably well for three-dimensional crystals,
is one of the evidences of strong anharmonicity in
graphene.

The deviations from harmonic behavior can be charac-
terized by examining the radial distribution function gðRÞ
around the first neighbor distance Rnn ¼ 1:42� 10�10 m.
In Fig. 2(a), we present gðRÞ and the related standard
deviation �ðRnnÞ shown in Fig. 2(b). In the harmonic
approximation, Rnn would have a Gaussian distribution

yielding�ðRnnÞ /
ffiffiffiffi

T
p

. Deviations from square root behav-
ior can be observed above 900 K, achieving 10% at
2000 K.

The Lindemann criterion has been shown to apply also
in 2D, giving �ðRnnÞ � 0:23Rnn at melting [25]. We found
�ðRnnÞ=Rnn ¼ 0:056 at T ¼ 2300 K, indicating that we
are significantly below the melting point. Moreover, the
conventional theory of two-dimensional melting relates it
to the formation of topological defects [26]. In our simu-
lations, we have not seen any sign of premelting anomalies
(formation of vacancies, topological defects, etc.) up to
3500 K [7].

The strong anharmonic behavior of graphene leads also
to an unusual temperature dependence of the elastic
moduli.

The 2D bulk modulus b is defined by

Eis ¼ 2bu2is; (1)

where Eis is the elastic energy per unit area under an
isotropic deformation uyy ¼ uxx ¼ uis, uxy ¼ 0.

For uniaxial deformations uxx (uyy ¼ uxy ¼ 0), the elas-

tic energy is

Euni ¼ 1
2ðbþ�Þu2xx; (2)

where � is the 2D shear modulus.
Isothermal moduli are also expressed as in Eqs. (1) and

(2), with replacement of the energy E by the free energy
F ¼ �T lnZ, where Z is the partition function. Although it
is impossible in MC simulations to calculate F directly, we
will use the facts that adiabatic and isothermal shear mod-
uli� coincide [27] and that the Poisson ratio defined below
can be calculated directly to derive the isothermal bulk
modulus bT . The Young modulus Y and Poisson ratio � are
defined in terms of b and � as [28]

Y ¼ 4b�

bþ�
; (3)

� ¼ b��

bþ�
: (4)

The Poisson ratio can also be defined as the ratio be-
tween the axial �axial and transverse �trans strains as

� ¼ � �trans
�axial

: (5)

The latter definition provides a way to calculate the
isothermal �T so that Eq. (4) with �A ¼ �T ¼ � yields
bT .
Adiabatic bulk and shear moduli bA and � have been

calculated using the following procedure. We equilibrate
the sample as described before. Afterwords, 20 configura-
tions separated by 5000 MC steps were stored and sub-
jected to either isotropic or uniaxial deformation in steps of
0.01% without letting the sample relax. For each sample,
the variation of the elastic energy with deformation was
then fitted to Eq. (1) and (2) over 21 points around the
undistorted configuration. The averages of the calculated
bA and� for the 20 samples are given in Table I and shown
in Fig. 3 together with the derived YA. We find that the
temperature dependence of � is anomalous. While in
general all elastic moduli decrease as a function of tem-
perature due to weakening of interatomic interactions with
temperature, in graphene � grows with increasing tem-
perature up to T � 700–900 K, which is the same tempera-
ture where the thermal expansion behavior (Fig. 1)
becomes normal. The Young modulus Y follows the
same anomalous temperature dependence as �.
We find that the behavior of the elastic energy as a

function of deformation u is parabolic in a wider range
of deformations, up to about 0.2%. For larger deforma-
tions, the elastic energies follow a cubic dependence on the
deformation at least up to u ¼ 3%. At this value the ratio of
the cubic term to the quadratic one in the elastic energy is
about 0.12. Up to 10% deformation and up to 2200 K,
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FIG. 2 (color online). (a) Nearest neighbor radial distribution
function gðRnnÞ for the N ¼ 8640 sample at 300, 900, and
2300 K. The vertical lines indicate the length of double (1:34�
10�10 m), conjugated (1:42� 10�10 m), and single (1:54�
10�10 m) bonds. (b) Standard deviation �ðRnnÞ (red circles)
and the best fit to

ffiffiffiffi

T
p

in the temperature range up to 500 K
(solid blue line).
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deformations are reversible, and no defects (vacancy and
Stone-Wales [29] or dislocations [30]) are found. This is
not surprising in view of the very high cohesive energy
(7:37 eV=atom in graphite [22]) of carbon and defect
formation energy in graphene [29]. To the best of our
knowledge, there are no experimental data on defect for-
mation under strain in this range of temperatures.

Next, the isothermal Poisson ratio �T has been calcu-
lated using the following procedure. We take the graphene
sample equilibrated as described before at a given tem-
perature. The sample is then stretched of 1% in the x and y
directions separately and reequilibrated again for at least
5� 104 MC steps. After reequilibration, the sample size in
the x and y directions has been averaged for at least 5�
104 MC steps, and the corresponding strain �x and �y has

been calculated yielding the Poisson ratio in each direction
through Eq. (5). The Poisson ratios in the x and y directions
are very close, and we take their average as �T . The

calculated adiabatic and isothermal Poisson ratios �A and
�T , respectively, shown in Fig. 4 and Table I, are very small
and coincide within the error in the whole studied tem-
perature range. However, at high temperature, we find that
�T can become negative. Materials with negative Poisson
ratio are called auxetic, and, in general, this property is
related to very unusual crystalline structures. Membranes,
on the other hand, may display this behavior due to en-
tropy. In fact, an expansion in the unstretched direction
contrasts the reduction of phase space due to the decrease
of height fluctuations due to stretching. Furthermore, the
smallness of � implies that the Lamé constant � ¼ b��
is small in comparison with �. Therefore, for a generic
deformation described by a tensor û, the elastic energy
Eel ¼ �u2ij þ ð1=2Þ�u2ii [1] for graphene can be approxi-

mated as Eel � �u2ij.

Once �T is known, we can calculate bT from Eq. (4) and
YT from Eq. (3). The calculated bT and YT are presented in
Table I and compared to the adiabatic values in Fig. 3. At
T ¼ 300 K, we find YA ¼ 353� 4 N �m�1 and YT ¼
355� 21 N �m�1 in good agreement with the experimen-
tal value 340� 50 N �m�1 [11].
Another important anharmonic effect is the temperature

dependence of the molar heat capacity at constant volume
CVðTÞ ¼ 3Rð1þ T=E0Þ (see Fig. 5), where R is the gas
constant and E0 is a typical energy of interatomic inter-
actions [13,20]. The low temperature behavior was calcu-
lated in the harmonic approximation in Ref. [23]. Our
approach is classical and therefore can be used to calculate
CV only at high temperatures, while CV deviates from 3R
as T tends to zero. On the other hand, our approach does
not use the harmonic approximation, yielding information
about phonon-phonon interaction effects. Our calculations
show that the linear temperature dependence of CV be-
comes noticeable for T > 800 K with E0 ¼ 1:3 eV.
Contrary to alkali metals where E0 is of the order of the
vacancy formation energy [18], for graphene, due to an-
harmonicity, E0 is about 1=5 of the defect formation
energy.
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FIG. 3 (color online). (a) 2D elastic moduli of graphene as a
function of temperature: adiabatic bulk modulus bA (solid blue
line with circles), isothermal bulk modulus bT (dashed blue line
with squares), and shear modulus � (solid red line with dia-
monds). (b) Adiabatic Young’s modulus YA (solid blue line with
circles) and isothermal YT (dashed red line with squares).
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FIG. 4 (color online). Adiabatic �A and isothermal �T Poisson
ratio of graphene as a function of temperature.

TABLE I. Adiabatic bulk (bA), shear (�) and isothermal bulk
(bT) moduli, and isothermal Poisson ratio (�T).

T, K bA (eV � �A�2) � (eV � �A�2) bT (eV � �A�2) �T

0 12.69 9.44 � � � � � �
100 12:54� 0:05 9:57� 0:21 13:17� 0:98 0:16� 0:03

200 12:44� 0:03 9:80� 0:15 � � � � � �
300 12:36� 0:04 9:95� 0:17 12:52� 1:41 0:12� 0:05

500 12:22� 0:05 10:16� 0:20 12:24� 1:66 0:09� 0:06

700 12:09� 0:05 10:27� 0:17 12:93� 2:13 0:12� 0:08

900 11:94� 0:04 10:25� 0:18 11:29� 2:20 0:09� 0:09

1100 11:85� 0:06 10:21� 0:22 11:31� 2:57 0:05� 0:11

1300 11:70� 0:04 10:07� 0:21 12:05� 3:00 0:09� 0:12

1500 11:57� 0:04 9:94� 0:18 11:63� 3:10 0:08� 0:13

1700 11:44� 0:04 9:75� 0:24 8:44� 3:20 �0:07� 0:18

2000 11:31� 0:06 9:52� 0:22 � � � � � �
2100 11:23� 0:05 9:46� 0:26 8:26� 3:58 �0:07� 0:21
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In summary, we have presented the temperature depen-
dence of the lattice parameter, elastic moduli, and high
temperature heat capacity of graphene calculated by
Monte Carlo simulations based on the LCBOPII empirical
potential [22] for a crystallite of about 15� 15 nm2. In the
studied range of temperatures, up to 2200 K, and for a
deformation as large as 10% we have not seen any sign of
defect formation. Indeed, the very high energy for defect
formation in graphene makes this material exceptionally
strong, as also found experimentally [11,12]. We find that
graphene is strongly anharmonic due to soft bending
modes yielding strong out of plane fluctuations. We find
that, up to 900 K, graphene is anomalous since its lattice
parameter decreases and shear modulus increases with
increasing temperature going over to normal behavior at
higher temperatures. It would be interesting to check these
predictions experimentally.
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FIG. 5. Temperature dependence of the molar heat capacity at
constant volume CV (solid line) and fit to CVðTÞ ¼
3Rð1þ T=E0Þ (dashed line).
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