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The problem of a magnetic impurity, atomic or molecular, absorbed on top of a carbon atom in

otherwise clean graphene is studied using the numerical renormalization group. The spectral, thermody-

namic, and scattering properties of the impurity are described in detail. In the presence of a small magnetic

field, the low-energy electronic features of graphene make it possible to inject spin-polarized currents

through the impurity using a scanning tunneling microscope. Furthermore, the impurity scattering

becomes strongly spin dependent and for a finite impurity concentration it leads to spin-polarized bulk

currents and a large magnetoresistance. In gated graphene the impurity spin is Kondo screened at low

temperatures. However, at temperatures larger than the Kondo temperature, the anomalous magnetotran-

sport properties are recovered.
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Graphene is a two-dimensional material made of carbon
atoms arranged in a hexagonal lattice. Its structural stabil-
ity and unusual electronic properties [1–6] make it an
excellent candidate for technological applications. The
low-energy electronic structure corresponds to massless,
chiral, fermionic quasiparticles described by the Dirac
equation. It is also a semimetal that can be globally or
locally doped with electrons or holes using gate electrodes.
These characteristics triggered intense activity that ranges
from the search of new devices to the study of new scenar-
ios for Dirac fermions [5,6]. Important advances have been
made in the preparation and characterization of graphene.
One of the ongoing goals is to incorporate spintronic
effects which requires the development of simple tools
for the manipulation and control of the carrier’s spins.
There are already some advances in this direction, like
the injection of a spin-polarized current from ferromag-
netic electrodes [7,8]. There are also some theoretical
proposals involving the use of edge states to transport
spin-polarized currents [9,10]. However, the properties of
graphene with magnetic impurities, atoms or molecules,
have received less attention. Previous works using mean
field approaches already pointed out the unusual behavior
of some properties as well as the possibility of controlling
the magnetic structure of the impurity with electric fields
[11–13]. The magnetic screening of an impurity spin, the
Kondo effect, in systems with graphenelike pseudogaps
has also been analyzed by several authors [14–16].

In this Letter we address the problem of graphene with
magnetic impurities and show that the peculiar electronic
properties of this system lead to some interesting new
effects. In particular, we show the potential use of these
impurities to inject and generate spin-polarized currents.
When an impurity is adsorbed on top of a carbon atom, the
impurity levels acquire a finite lifetime; that is, the spectral
function shows broad peaks. In the undoped case and for
realistic parameters, the impurity behaves as a free spin at

low temperatures, and we show that with a small magnetic
field, such that the Zeeman energy is larger than the
thermal energy kBT, a nonmagnetic scanning tunneling
microscope (STM) tip can be used to inject spin-polarized
electrons with an extraordinary efficiency. In this regime
we also show that the bulk transport properties present
interesting features: in the absence of electron-hole sym-
metry and with a finite impurity concentration there is a
large magnetoresistance and the transport current is spin-
polarized. Conversely, a magnetic impurity in doped gra-
phene leads to the Kondo effect. While in general the
Kondo temperature TK is small due to the small density
of states at the Fermi energy of graphene, in some cases it
could be well above the experimentally accessible limits.
Our starting point is the Anderson model describing an

impurity with a single orbital of energy "d and Coulomb
repulsion U hybridized with the conduction electron states
with a matrix element Vhyb. The Hamiltonian of the system

is then H ¼ Himp þHgraph þHhyb, where the first term is

given by

Himp ¼
X
�

ð"d � ��BÞdy�d� þUdy" d"d
y
# d#: (1)

Here dy� creates an electron with spin � at the impurity
state and �B is the Zeeman energy shift due to an external
in-plane magnetic field B. The Hamiltonian of the gra-
phene layer is

Hgraph ¼ �t
X
k;�

½�ðkÞayk�bk� þ��ðkÞbyk�ak��; (2)

where ayk� and byk� create electrons with spin � and wave

vector k on sublattices A and B, respectively. The hopping
matrix element t is of the order of 2.7 eV [6] and �ðkÞ ¼P

je
ik��j with f�jg the three vectors connecting one site

with its nearest neighbors. As a result there are two bands
of width 3t that touch each other at the corners of the
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Brillouin zone (Dirac point). Finally, assuming that the
impurity is adsorbed on a site of sublattice A, the hybrid-

ization Hamiltonian is Hhyb ¼ Vhybffiffiffi
N

p P
k�½ayk�d� þ dy�ak��,

with N the number of unit cells in the sample.
One of the main ingredients that determines the nature of

the solution is the local density of states of the host
material. Close to the Dirac point (E ¼ 0), the local density
of states, per atom and spin, can be approximated by
�ðEÞ ¼ �jEj with � ¼ Auc=2�@

2v2
F, where Auc is the

unit cell area and vF is the Fermi velocity. In what follows
we use this form with a high energy cutoff D. The other
relevant parameters ("d, U, Vhyb) depend on the nature of

the impurity; in particular, U is of the order of a few eVs
for transition metal impurities and smaller for molecules.
We solve the problem using the extensions of Wilson’s
numerical renormalization group (NRG) method that allow
us to describe a nonconstant density of states for the host
material and to improve the accuracy of the high energy
features [15,17]. We have studied this model numerically
for a wide range of parameters. In what follows we will
focus on the localized spin regime where the average
number of electrons in the impurity level is of the order
of 1.

In Fig. 1(a) we present a color map of the impurity
spectral density Að!Þ for the undoped case—the Fermi
energy EF lying at the Dirac point. The maximums of
Að!Þ are shifted from the bare parameters "d and "d þU
shown in the figure with dashed lines. While for a general
�ðEÞ some shifts are expected, here the shifts are large
and the energy difference between the peaks is smaller
than U. This is due to the interplay between a Hartree
correction and the hybridization self-energy [12]. Fig-
ures 1(b) and 1(c) show the impurity spectral functions

for two different values of "d. Note the absence of a Kondo
peak at EF. These spectral densities could be measured
with a STM where electrons from the microscope tip
tunnel to the impurity sensing the local density of states.
If the resonant level is close to the Dirac point (j"dj &
1 eV) the STM can measure the resonance. In general there
is some leaking of electrons that tunnel to the substrate
generating Fano structures. The STM differential conduc-
tance at low temperatures is then given by [18]

GðVbÞ ¼ 4e2

�@
~t2�tASTMðEF þ eVbÞ; (3)

where Vb is the voltage drop from the tip to the sample, and
�t is the tip density of states at the Fermi energy. The
quantity ASTMðEÞ is the spectral function of the operator

ðtcc y
� þ tdd

y
�Þ=~t, tc and td are matrix elements for the

tunneling of an electron from the tip to the conduction

band states and to the impurity orbital, respectively, ~t ¼
ðt2c þ t2dÞ1=2, and c y

� is the field operator that creates an

electron in a graphene state centered below the tip. In what
follows we consider that the tip is on top of the impurity

and for simplicity we take c y
� ¼ N�1=2

P
k�a

y
k�. Even for

tc ’ td the effect of tc is very small due to the smallness of
�ðE� EFÞ, see Fig. 1, and the STM gives direct informa-
tion of the impurity spectral density.
In the presence of an external magnetic field the impu-

rity is polarized and the spectral densities become spin
dependent. In Fig. 2 we present results obtained at low
temperatures and low fields. Almost all the weight of the
spin-resolved spectral densities is transferred to a single
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FIG. 1 (color online). (a) Color map of the spectral density of a
magnetic impurity on graphene. Parameters are U ¼ 2 eV,
Vhyb ¼ 1 eV. (b) STM spectra at the impurity for tc=td ¼ 0

(solid lines) and tc=td ¼ 0:3 (dashed lines). Here "d ¼ �1 eV.
(c) Same as (b) with "d ¼ �0:5 eV and tc=td ¼ 0; 1:0.
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FIG. 2 (color online). (a) Impurity spectral density for the
undoped case in the presence of a small magnetic field �B ¼
70 �eV for the spin-up (dashed line) and spin-down (solid line)
projections. Here Vhyb ¼ 1:4 eV, "d ¼ �U=2 and the other

parameters are as in Fig. 1. (b) Same as (a) for "d ¼ �0:5 eV.
(c) STM current and (d) current polarization as a function of the
bias voltage Vb for the spectral densities shown in (a) (solid line)
and (b) (dashed line).
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peak at the renormalized energies ~"d (for the spin-up) and
~"d þ ~U (for the spin-down). For the small magnetic field
used in the calculation the Zeeman shifts of the peaks are
not appreciable. These results suggest that the spin depen-
dent STM differential conductance at high voltages be-
comes very different for the two spin orientations. To
estimate the current of spin-� electrons, I�, we integrate
the spin dependent differential conductance. The total
current I ¼ I" þ I#, in units of I0 ¼ 4e~t2�t=�@, and the

current polarization PSTM ¼ ðI" � I#Þ=I are shown in

Figs. 2(c) and 2(d), respectively. While the tunneling cur-
rent I is small, the polarization PSTM can exceed 0.98. As
we show below, the possibility of injecting spin-polarized
currents is not restricted to the undoped case.

In the case of doped graphene EF is shifted from the
Dirac point. In Fig. 3 we present results for the impurity
spectral density Að!Þ at low temperatures. There is now a
Kondo peak at EF. Following Langreth [19], AðEFÞ ¼
sin2ð�~nd=2Þ=�� where ~nd is the total charge displaced
by the impurity and � ¼ ��ðEFÞV2

hyb. Our NRG results

reproduce well this exact result. In Fig. 3(c) we present
results for the impurity charge nd versus "d. The impurity
charge changes when the renormalized energies ~"d and
~"d þ ~U cross EF and the plateau corresponding to a local-
ized spin in the impurity, nd � 1, is narrowed as Vhyb

increases. This narrowing should not be interpreted as a
reduction of the effective repulsion. As we show below, the
Kondo temperature is determined by the bare parameterU.

We calculate the impurity spin susceptibility �ðTÞ, that
at low temperatures shows universal behavior, and extract
TK using Wilson’s criterion TK�ðTKÞ=�2 ¼ 0:025. The
results are shown in Fig. 3(d) where logðTKÞ as a function

of "d shows the usual quadratic behavior with a minimum
at the center of the nd � 1 plateau and a curvature deter-
mined by the bare interactionU. For a given set of impurity
parameters, TK varies with doping, or gate voltage, ap-
proaching zero for the undoped case.
The transport properties of graphene are peculiar in

many aspects, and it is interesting to study the effect of
adsorbed magnetic impurities. In what follows we present
results for the resistivity �impðTÞ due to these impurities in

the low impurity concentration (cimp) regime. Using the

general expression for the conductivity in graphene [20,21]
and evaluating the band propagators in the Born approxi-
mation we obtain, to first order in cimp,

�impðTÞ ¼ �0V
2
hyb

�Z �
� @fð!Þ

@!

� j!j
Að!Þd!

��1
; (4)

where �0 ¼ �cimph=e
2. The general temperature depen-

dence of the resistivity in the different regimes requires the
numerical evaluation of the integral. As shown in Fig. 4,
for the undoped case the resistivity is temperature inde-
pendent while for the doped case we obtain the usual
Kondo behavior. The NRG results can be qualitatively
reproduced performing some simple approximations. In
the undoped case the spin dependent low frequency impu-
rity spectral density is given by A�ð!Þ ’ �V2

hybj!j½ð1�
nd ��Þ="2d þ nd ��=ð"d þUÞ2� where nd� is the number of

spin � electrons in the impurity orbital [22]. For the sake
of simplicity let us consider first the case "d ¼ �U=2 for
which nd� ¼ 1

2 ; the resistivity is then given by �impðTÞ ¼
�0�V

4
hyb="

2
d. This result corresponds to impurities gener-

ating a short-range potential of amplitude � / V2
hyb=j"dj.
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FIG. 3 (color online). (a) Impurity spectral density for the
doped case (EF ¼ �0:35 eV). The arrow indicates the position
of the Dirac point. (b) Detail of the Kondo peak. (c) Impurity
occupation as a function of the level energy: Vhyb ¼ 1:4 eV and

EF ¼ �0:35 eV (filled circles), Vhyb ¼ 1:75 eV and EF ¼
0:35 eV (filled triangles). The local interaction is in both cases
U ¼ 2 eV. (d) Kondo temperature versus "d for the parameters
of (c). The lines are parabolic fits.
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FIG. 4 (color online). (a) Resistivity versus temperature for
doped (EF ¼ �0:35 eV, solid diamonds) and undoped graphene
(solid squares) for B ¼ 0, U ¼ 2 eV, Vhyb ¼ 1:4 eV, and "d ¼
�0:63 eV. Doped graphene shows Kondo scaling of the resis-
tivity indicated by the dotted line. (b) Resistivity (triangles) and
current polarization (circles) versus temperature. Undoped gra-
phene, �B ¼ 70 �eV (solid symbols) and �B ¼ 700 �eV
(open symbols). Other parameters are U ¼ 3:5 eV and "d ¼
�0:5 eV.
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In the absence of electron-hole symmetry ("d � �U=2)
the system presents a large magnetoresistance due to the
difference in the scattering rate of the two spin channels.
The contribution of each spin is given by twice the right-
hand side of Eq. (4) with Að!Þ replaced by A�ð!Þ, and the
total resistivity is

�impðT; BÞ ¼ �impðT; B ¼ 0Þ½1� �2m2ðT; BÞ�; (5)

with mðT; BÞ ¼ ðnd" � nd#Þ and for nd ¼ 1, � ¼
½ð"d þUÞ2 � "2d�=½ð"d þUÞ2 þ "2d�. The current polariza-
tion is P � ðI" � I#Þ=I ¼ �mðT; BÞ. These expressions are
in good qualitative agreement with the numerical results
shown in Fig. 4(b). The actual magnetoresistance and the
degree of polarization of the current in bulk graphene will
depend on the presence and intensity of additional scatter-
ing mechanisms. For the magnetoresistance to be observ-
able, the scattering rate due to other mechanisms should be
smaller than the one due to the impurities; that is, the
impurities should be adsorbed on clean graphene.

For the doped case the Kondo screening in the T ! 0
limit gives

�impð0Þ ¼ h

e2
cimpsin

2ð�~nd=2Þ
�n

; (6)

where n is the number of carriers per carbon atom. In the
unitary limit, the resistivity is just determined by the ratio
cimp=n. In the limit T � TK we recover the resistivity

characteristic of potential scattering defects. The tempera-
ture dependence of the resistivity, for T & TK, shows the
universal Kondo behavior [23].

In summary, we have numerically solved the problem of
a magnetic impurity in graphene and analyzed the effect of
external in-plane magnetic fields. We find that as "d varies,
the region of stability for a localized spin (nd � 1) is
narrowed and shifted with respect to the Vhyb ! 0 limit,

in qualitative agreement with mean field results [12].
Kondo screening of the impurity spin occurs at low tem-
peratures for the doped case. The Kondo temperature TK

decreases exponentially with decreasing doping, and for
the undoped case the impurity behaves as a free spin down
to zero temperature. We find very little Fano distortions in
the STM spectrum that consequently gives a direct mea-
surement of the impurity spectral densities. Our central
results concern the effect of magnetic fields: for zero or low
doping, low TK, the condition T; TK < �B is accessible at
moderate values of the external field B. In this regime the
impurity spin is polarized and a nonmagnetic STM tip can
be gated to inject a spin-polarized current; that is, the
impurity acts as a spin valve. The magnetic field controls
the degree and the axis of the spin polarization. In this
regime, a finite impurity concentration leads to large mag-
netotransport effects in bulk graphene: for small values of
j"d � EFj the system shows large magnetoresistance and
spin-polarized currents. All these effects are unique to
graphene: they require V2

hyb=j"dj to be large and the spin

to be free at low temperatures, conditions that are never

reached simultaneously in ordinary metals. Our main re-
sults are robust even in the presence of defects or other
impurities that may change the structure of the pseudogap
and the nature of the magnetic screening. However, for
magnetic impurities close to one of these defects, new
features are expected to appear in the STM spectra that
will depend on the nature of the defect.
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