
Control of Transport-Barrier Relaxations by Resonant Magnetic Perturbations

M. Leconte,1 P. Beyer,1 X. Garbet,2 and S. Benkadda1

1France-Japan Magnetic Fusion Laboratory, LIA 336 CNRS/UMR6633, CNRS–Université de Provence,
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Transport-barrier relaxation oscillations in the presence of resonant magnetic perturbations are inves-

tigated using three-dimensional global fluid turbulence simulations from first principles at the edge of a

tokamak. It is shown that resonant magnetic perturbations have a stabilizing effect on these relaxation

oscillations and that this effect is due mainly to a modification of the pressure profile linked to the

presence of both residual magnetic island chains and a stochastic layer.
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In magnetic fusion plasmas, turbulent transport reduces
the energy confinement time, leading to a low confinement
regime (Lmode). 30 years ago, a high confinement regime
called the H mode and linked to a sheared rotation of the
plasma, was discovered [1,2]. In this regime, the turbu-
lence is locally reduced within a narrow layer, known as a
transport barrier, located a the plasma edge [3,4]. The
reduction of turbulence within the transport barrier results
in a steepening of the density and temperature profiles.
However, the transport barrier is not static but relaxes
quasiperiodically, leading to violent bursts of heat and
particles radially outward termed edge localized modes
(ELMs). The operational regime for next step fusion
devices such as the International Thermonuclear Experi-
mental Reactor requires an ELMy H mode. ELMs are
beneficial for power exhaust, but they represent, however,
a threat for the plasma facing components and therefore
need to be controlled. Over the last decade, the possibility
of controlling ELMs has become more and more plausible
as recent experiments were carried out on DIII-D using I
coils, on JET using error field correction coils, and on the
TEXTOR tokamak using the dynamic ergodic divertor [5–
8]. These experimental studies obtained a qualitative con-
trol over the ELMs by imposing static resonant magnetic
perturbations (RMPs) at the plasma edge. However, in
order to get any quantitative result, work has to be done
to understand the interplay between transport-barrier re-
laxations and RMPs. Recently, ELMy-like relaxation os-
cillations of transport barriers have been observed in global
turbulence simulations of the tokamak edge [9–12]. The
relaxation oscillations observed in these simulations have
common characteristics with type III ELMs. In this Letter,
we investigate numerically the effects of static RMPs on
transport-barrier relaxation oscillations. The simulation
domain is located in the edge region, around the q ¼ 3
resonant surface. We use the geometry of the TEXTOR
tokamak, and plasma parameters close to those used in
typical experiments on this machine [13,14].

The model used in this study describes electrostatic
resistive ballooning turbulence involving the pressure p
and the electrostatic potential �. The equations describing
this model are the following [11]:
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The first equation corresponds to the vorticity equation,
where r2

?� is the vorticity of the perpendicular (to the

magnetic field) component of the E� B flow, and the
parallel current and viscosity effects (�) are taken into
account. The second equation corresponds to energy con-
servation, where �k and �? are collisional heat diffusiv-

ities parallel and perpendicular to the magnetic field, and
S ¼ SðxÞ is an energy source modeling a constant heat-flux
density from the plasma core. Following the standard con-
vention, x represents the local radial coordinate, y is the
local poloidal coordinate, and z is the local toroidal coor-
dinate, in a magnetic fusion device. The curvature operator

Ĝ arises from the toroidal geometry of the tokamak, and

�c ¼ 10
3
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� 1 is basically the ratio of the pressure gra-

dient length Lp to the tokamak major radius R0. In the

present model, time is normalized to the interchange time
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, which also defines the perpendicu-

lar length scale through the ballooning length �bal ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nrefi mi�k=�inter

q
Ls

B0
, where cs is the plasma sound speed,

B0 is the magnetic field strength, nrefi is a reference ion
density, mi is the ion mass, �k is the parallel resistivity of

the plasma, and Ls is a reference magnetic shear length. In
order to obtain a transport barrier, the poloidally and

toroidally averaged component Vðx; tÞ ¼ @ ��
@x ey of the E�

B flow is driven by a forced poloidal sheared flow VFðxÞ ¼
�d tanhðx=dÞey, chosen to be centered at x ¼ 0 (e.g., at the
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position of the main resonance of the RMPs), where �
denotes the shear rate and d is the shear-layer width. Here,
��ðx; tÞ ¼ R

2�
0

R
2�
0 �dydz is the poloidally and toroidally

averaged electric potential. Note that the parallel gradient
is rk ¼ rk0 þ fc RMP; �g, where rk0 is the component due

to the unperturbed magnetic field, and fc RMP; �g ¼
@c RMP

@x
@
@y � @c RMP

@y
@
@x denote the Poisson brackets. The

magnetic flux due to the resonant magnetic perturba-
tion is written as c RMPðx; y; zÞ ¼ ID=I

ref
D

P
c mðxÞ�

cosðmr0 y�
n0
Ls
zÞ where c mðxÞ ¼ sinðm�m0Þ

m�m0
ðr0rcÞm expðmr0 xÞ is

the spectrum of the RMPs in slab geometry, m0 is the
central poloidal harmonic number, rc denotes the radial
position of the RMP-producing coils, IrefD is a reference
value of the current in the RMP-producing coils, n0 is the
toroidal harmonic number, and r0 is a typical radius where
the turbulence considered in this Letter (resistive balloon-
ing) develops. In the case studied here, we use n0 ¼ 4, with
qx¼0 ¼ q0 ¼ 3, so that the central poloidal harmonic num-
ber is m0 ¼ 12.

Let the pressure be decomposed into a mean part �p and
harmonics ~p ¼ p� �p, where �pðx; tÞ ¼ R

2�
0

R
2�
0 pdydz is

the poloidally and toroidally averaged pressure. In a
steady-state @ �p=@t ’ 0, the conservation of energy in the
plasma (2), where the conserved total energy flux is
Qtot ¼

R
SðxÞdx ¼ const, leads to the following equation:

Qconv þQdiff þQRMP ¼ Qtot; (3)

where QRMP ¼ �kh@c RMP

@y rkpi represents the heat flux due

to the magnetic flutter generated by the RMPs, and
Qconv ¼ h~p~vxi is the time-averaged convective heat flux,
where ~vx denotes fluctuations of the radial velocity, and
Qdiff ¼ ��?d �p=dx is the diffusive heat flux. Here, h. . .i
denotes an average over the poloidal direction (y), the
toroidal direction (z), and time t.

Figure 1 shows time series of the energy content
R
�pdx

and the convective flux Qconv, in the presence of an im-
posed mean sheared flow, for different values of the diver-
tor current ID.

In the reference case without RMPs [Fig. 1(a)], by
imposing a forced sheared flow VF on the system, a steady
state is reached, where so-called relaxation oscillations are
observed, corresponding to quasiperiodic relaxations of the
pressure gradient. These relaxations are synchronous to the
heat bursts observed on the heat-flux time series [Fig. 1(b)]
and therefore also correspond to relaxations of the trans-
port barrier.

In the case with RMPs, the energy content shows that the
relaxation oscillations are suppressed by the RMPs, and
this suppression is more efficient for higher values of the
perturbation current ID [Figs. 1(c) and 1(e)]. This suppres-
sion of relaxations is also shown as a reduction of the
amplitude of the heat bursts and an increase of their
frequency [Figs. 1(d) and 1(f)].

Figure 2 shows the radial profiles of the pressure gra-

dient j d �pdx j, the convective fluxQconv, and the RMP-induced

flux QRMP, in the presence of an imposed mean sheared
flow, for different values of the divertor current ID. In the
reference case without RMPs (ID ¼ 0) but with a mean
shear flow (� ¼ 4), the convective flux Qconv [Fig. 2(b)] is
reduced around the position x ¼ 0 compared with a case
with no flow [Fig. 2(b), dash-dotted line]. A high pressure

gradient j d �pdx j around this position, corresponding to an

edge transport barrier (ETB), is created at the position of
maximal flow shear x ¼ 0 [Fig. 2(a)]. The appearance of
this strong pressure gradient is linked to a reduction of the
convective heat flux Qconv by the mean sheared flow as
seen from the conservation of energy (3) with QRMP ¼ 0:

Q0
conv þQ0

diff ¼ Qtot; (4)

where the superscript 0 indicates the reference case without
RMPs (ID ¼ 0).
In the case when there is a combination of a mean shear

flow (� ¼ 4) and RMPs (ID � 0), the ETB generated by
the mean shear flow is eroded in the vicinity of the position
x� 0, compared to the case without RMPs [Fig. 2(a)]. This
erosion of the ETB only appears when both a mean shear
flow and RMPs are present, and therefore can be explained
by a synergetic effect.
We propose the following model based on the balance of

heat fluxes to explain the behavior of the convective flux
and pressure gradient in the presence of RMPs and a
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FIG. 1 (color online). Effects of RMPs on the dynamics of
barrier relaxations: time traces of the thermal energy (a, c, e) and
the radial heat flux (b, d, f), in the presence of an imposed mean
shear flow with shear rate � ¼ 4, for (a, b) no RMP perturba-
tion, (c, d) ID ¼ 0:5 kA, and (e, f) ID ¼ 1 kA.
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shearflow-induced transport barrier. Taking into account
RMPs, it is convenient to decompose the pressure harmon-
ics into an equilibrium and a turbulent part: ~p ¼
~peqðx; y; zÞ þ ~pturbðx; y; z; tÞ, and similarly for the radial
velocity harmonics ~vx. The energy balance (3) can then
be written

Q
eq
conv þQturb

conv þQdiff þQRMP ¼ Qtot; (5)

where Q
eq
conv ¼ h~peq ~v

eq
x i is the equilibrium convective flux

and Qturb
conv ¼ h~pturb ~vturb

x i is the time-averaged convective
turbulent flux.

Because of the presence of localized residual island

chains (as seen on Fig. 4) of normalized width w�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ID=I

ref
D

q
, depending on the region considered, there are

three different limits:
(i) Close to the resonant surface r ¼ r0, e.g., jxj � w

2 �
d, the turbulent convective flux is reduced by the sheared
flow and additionally reduced by RMPs due to stochastic-
ity of magnetic field lines (Fig. 4) so that Qturb

conv=Qtot � 1
[Fig. 3(a)]. Moreover, an equilibrium convective fluxQeq

conv

indirectly linked to RMPs appears [Fig. 3(b)]. This equi-
librium convective flux is a consequence of the presence
of an RMP-induced residual magnetic island chain at the
radius r ¼ r0 (in TEXTOR, r0 ¼ 0:45½m�) corresponding
to the position x ¼ 0 (Fig. 4). Moreover, the RMP-induced
flux is low in the vicinity of x ¼ 0: QRMP=Qtot � 1
[Fig. 2(c)]. Therefore, the energy balance (5) simplifies to

Qeq
conv þQdiff �Qtot (6)

so that, in the region x� 0, the appearance of the equilib-
rium convective flux Qeq

conv must be balanced by a decrease
of the pressure gradient, seen in Fig. 2(a), similar to a
flattening of the pressure profile on the island chain, that
occurs in the study of plasma macroinstabilities such as
tearing modes [15].
(ii) For r < r0, far from the resonant surface but inside

the barrier region, e.g., �d � x � � w
2 , the RMP-linked

equilibrium convective flux is small Qeq
conv=Qtot � 1, since

there is no residual island chain in this region, so it does not
play any role. The turbulent convective flux Qturb

conv is re-
duced by the mean shear flow. Moreover, the RMP-
induced flux QRMP is small in this region QRMP=Qtot � 1.
Therefore, the energy balance (5) reduces to

Qturb
conv þQdiff �Qtot: (7)

Additionally, in this region, the turbulent convective flux
does not depend on the perturbation current ID [Fig. 3(a)]
because the magnetic field lines are not stochastic (Fig. 4),
so that for�d � x � � w

2 the turbulent convective flux is

only weakly perturbed: Qturb
conv �Q0

conv. Therefore, Eqs. (4)
and (7) imply Qdiff �Q0

diff . Thus the pressure gradient

profile is only weakly modified by the RMPs [Fig. 2(a)].
(iii) For r > r0, far from the resonant surface but inside

the barrier region, e.g., w
2 � x � d, the equilibrium con-

vective flux is small (Q
eq
conv=Qtot � 1), since there are no
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FIG. 3 (color online). Components of the radial convective
flux: (a) turbulent convective flux Qturb

conv, and (b) equilibrium
convective flux Q

eq
conv, e.g., RMP linked, for different values of

the perturbation current ID. The total heat flux is Qtot ¼ 10.
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FIG. 2 (color online). Effects of resonant magnetic perturba-
tions on (a) the pressure gradient and (b, c) radial heat fluxes, for
different values of the perturbation current ID. Qconv denotes the
convective heat flux, and QRMP is the conductive heat flux
induced by the resonant magnetic perturbations. The total heat
flux is Qtot ¼ 10.
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residual island chains. The energy balance (3) thus reduces
to

Qturb
conv þQdiff þQRMP �Qtot: (8)

An increase of the perturbation current ID causes an in-
crease of the RMP-induced heat flux QRMP, but it also
induces a decrease of the turbulent convective heat-flux
Qturb

conv, linked to stochasticity of magnetic field lines
(Fig. 4). In this region, there is therefore a competition
between the QRMP and Qturb

conv heat fluxes, which may ex-
plain the fact that, in the region w

2 � x � d, the pressure

gradient increases for small perturbation currents and de-
creases for higher perturbation currents [Fig. 2(a)].

From the analysis presented here, the stabilization of
relaxation oscillations appears to be linked to an erosion of
the transport barrier, i.e., a reduction of its width.

To confirm this hypothesis, we performed simulations
without RMPs, but with a narrower transport barrier (pro-
duced by a sheared flow with a thinner shear layer d).
Figure 5 shows time series of the convective flux, in the
case without RMPs, for two different values of the shear-
layer width d. As seen from the comparison of Figs. 1 and
5, there is a striking similarity between the effects of a
decrease of the shear-layer width d and the effects of
RMPs on the dynamics of ETB relaxations. Our simula-
tions therefore suggest that the main effect of RMPs in the
presence of an ETB is to modify the geometrical properties
of the ETB, e.g., its width and position, yielding a reduc-
tion of the amplitude and frequency of the ELMy-like
relaxations, and therefore leading to grassy ELMy-like
relaxations.

To summarize, we investigated the effects of RMPs on
transport-barrier relaxations. It is shown that RMPs have a

stabilizing effect on these relaxations. This effect is linked
to a modification of the pressure gradient equilibrium
profile due mainly to a modification of the magnetic to-
pology, e.g., the formation of magnetic island chains, and
to RMP-induced stochastic transport. An erosion of the
pressure gradient profile is observed at the surface of
principal resonance (also chosen to be the central position
of the sheared flow). This erosion is shown to be linked to
the presence of residual magnetic island chains inducing a
stationary convective transport of heat (and particles) in the
radial direction. Far from the principal resonance surface
but inside the shear layer, the pressure gradient modifica-
tions are only linked to the presence (or not) of stochastic
resonance overlap.
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