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By incorporating a large-scale shear flow into turbulent rotating convection, we show that a sufficiently

strong shear can promote dynamo action in flows that are otherwise nondynamos. Our results are

consistent with a dynamo driven either by the shear-current effect or by a fluctuating � effect interacting

with the shear, but not with either a classical �2 or �! dynamo.
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Magnetic fields are observed in virtually all cosmical
bodies, from planets to stars and accretion discs; in many
cases their presence can be categorically attributed to
dynamo action. The most pressing problem in astrophys-
ical dynamo theory is to explain the generation of large-
scale magnetic fields, i.e., fields with significant energy on
scales large compared with those of the driving flow. The
Sun, with its global magnetic field manifested through
surface activity, represents the most well-known example
of a large-scale dynamo.

Astrophysical dynamos are often studied within the
framework of mean field electrodynamics, in which the
evolution of a mean (large-scale) magnetic field is de-
scribed in terms of transport coefficients determined from
averaged small-scale properties of the flow and field. The
generation of magnetic field can then be ascribed to the �
effect, which relates the mean electromotive force (emf) to
the mean magnetic field. The � effect is nonzero only in
flows that lack reflectional symmetry [1]; consequently
helical flows are prime candidates for large-scale dynamo
action. Indeed, in certain limiting cases the relation be-
tween � and helicity can be made explicit [1,2]; however,
and importantly, there is no theory relating these two
quantities when the magnetic Reynolds number Rm � 1
and the Strouhal number St is of order unity, the case of
astrophysical relevance. Numerical simulations reveal that
the relationship between � and helicity is indeed far from
straightforward [3].

The most natural system for investigating astrophysical
dynamo action is that of rotating thermal convection [4,5].
Recent studies of convection in a domain of large horizon-
tal extent—namely one that encompasses many convective
cells—have demonstrated that although there is both sig-
nificant helicity and healthy dynamo action (provided that
Rm is sufficiently large), there is no evidence of any
significant large-scale magnetic field [6,7]. Indeed, at-
tempts to measure the � effect directly reveal a strongly
fluctuating quantity with a very small mean. The similarity
of the spectra of the magnetic fields generated by rotating

and nonrotating convection—for which the flows are not
helical—provides further evidence that the dynamo is con-
trolled by small-scale processes (such as stretching and
cancellation; see [8]) and not by mean field processes (such
as a lack of reflectional symmetry).
The failure of rotating turbulent convection to act as a

large-scale dynamo suggests that the notion that helical
flows will necessarily lead to large-scale field generation is
too simplistic. However, most astrophysical bodies possess
a strong large-scale shear flow (differential rotation) and,
indeed, most mean field astrophysical dynamo models
incorporate this feature. It is therefore of interest to exam-
ine the additional effects arising from incorporating such a
shear into the rotating convection model: we find that
dynamo action is promoted and that there can be a signifi-
cant large-scale field component, in contrast to the basic
model.
One can envisage four possible beneficial effects of the

shear on the mean field dynamo process: (i) that the large
spatial scale of the shear leads to an enhanced � through
greater spatial correlation of the small-scale motions [7,9];
(ii) that even though the mean � remains small there may
nonetheless be an effective �! dynamo when the shear is
significant; (iii) that the anisotropy induced by the shear
may lead to a significant shear-current effect [10–12] (see
also [13], for a related effect); (iv) that the shear may
interact with temporal fluctuations in � to produce an
effective mean field dynamo [14,15]. Here we explore
these various possibilities by introducing large-scale ve-
locity shear into the model of [6,7].
As in [6,7] we consider a plane Boussinesq convective

layer (0< x, y < �, 0< z < 1) with rotation about the
vertical axis. In order to investigate turbulent dynamo
action it is necessary to consider sufficiently large values
of �. Here, as in [6,7], we take � ¼ 5; this is large enough
to provide a reasonable scale separation between the size of
the domain and the size of a convective cell, with Oð100Þ
convective cells in the domain, but small enough to allow
us to undertake a number of computational runs. The basic
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model is extended by the inclusion of a horizontal flow of
the form

U 0 ¼ U0 cos
2�y

�
x̂; (1)

accomplished by replacing u with uþ U0 in the governing
equations. It should be noted that although a flow with a
large-scale component [i.e., with the same spatial depen-
dence as the ‘‘target flow’’ (1)] does indeed occur, it may
have a very different amplitude; the hydrodynamic state
that ensues depends on interactions between the shear flow
and convection and, possibly, on instabilities of the shear
flow itself. Importantly, the scale of variation of this shear
flow is much greater than all scales of the convection; this
is essential if the results are to be explained within the
mean field framework. Tobias et al. [16] have presented
results in a related geometry but with a very different shear
flow, one with no horizontal structure but with a strong
vertical variation.

In this initial study we focus on the regime in which
convection is fairly vigorous but in which there is no
dynamo action in the absence of shear; specifically we
set the Rayleigh number Ra ¼ 150 000, the Taylor number
Ta ¼ 500 000, the Prandtl number ¼ 1, and the magnetic
Prandtl number ¼ 5; this leads to a Reynolds number
Re � 60 and a magnetic Reynolds number Rm � 300. A
useful a priorimeasure of the imposed shear is given by the
shear parameter S, defined by

S ¼ U0ð‘=urmsLÞ; (2)

where urms is the rms velocity in the absence of shear, L is
the scale of the shear, and ‘ is the horizontal scale of the
convection cells in the absence of shear. For the parameters
used here, S � U0=300. One can also define an effective
value of S, Seff say, analogous to (2) but involving the shear
flow that emerges dynamically in the sheared convective
state.

We have investigated flow and dynamo properties for the
range 0 � S & 7. Aweak seed magnetic field of zero mean
is introduced into an established, stationary, purely hydro-
dynamic state of sheared convection. Figure 1 shows the
evolution of the magnetic energy versus time for a range of
values of S, and Fig. 2 the kinematic growth rate � as a
function of S. We see immediately that dynamo action
ensues for sufficiently large values of S, although the
dependence of � on S is not straightforward. Following
the onset of dynamo action (with the critical value of S in
the interval 1=3< S< 1=2) � is linearly related to S, the
strongest dependence possible [17]. For larger S though
this simple relationship no longer holds. This can be ex-
plained, at least partially, by inspection of the purely
hydrodynamic states (see Fig. 3). For the two largest values
of S considered (S ¼ 5, 20=3), a coherent vortex forms and
the proportion of energy in the ‘‘target mode’’ becomes
much smaller, leading to a reduction in Seff . Note also that
for S * 1 the amplitude of the saturated magnetic energy is
fairly insensitive to the value of S.

We have examined the spatial structure of the dynamo-
generated magnetic fields, in both the kinematic and dy-
namic regimes, for evidence of large-scale dynamo action.
Figure 4 shows the spectra of the horizontal fields for S ¼
5=3 and, for comparison, the spectra of the (small-scale)
dynamo fields for Ra ¼ 1 000 000 in the absence of shear.
Note particularly that for the case of S ¼ 5=3 there is
roughly equal energy in all scales comparable with and
greater than that of the driving convective flow, in contrast
to the case of no shear, for which the spectrum is peaked at
the scale of the convection. (Note that in Fig. 4 only the
shapes of the spectra, and not their amplitudes, are signifi-
cant, since the two runs are at different values of Ra and S.)
In both cases the shapes of the spectra in the kinematic and
dynamic regimes are similar, indicating that the structure
of the field in the final nonlinear state is determined, to a
large extent, from kinematic considerations.
We have also directly determined the � effect, by im-

posing a uniform horizontal magnetic field and measuring
the induced emf. Since this procedure has an unambiguous
interpretation only in the absence of small-scale dynamo
action [18], we have considered the value U0 ¼ 100 ðS �
1=3Þ, which is strong enough to influence the flow but is not

FIG. 1. Magnetic energy evolution for a range of S. In terms of
increasing linear growth rate, S ¼ 1=3 (not a dynamo), 2=3, 5=3,
5, 20=3, 10=3.

FIG. 2. Growth rates of the magnetic field versus S.
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quite strong enough to induce dynamo action. Figure 5(a)
shows the time history of the longitudinal� effect (i.e.,�11

calculated from Ex ¼ �11B0x), obtained from a spatial
average over half the domain [6], for S ¼ 0. As discussed
in detail in [7], even though � is the result of a spatial
average over many convective cells, it remains highly
fluctuating in time, with only a small mean. Thus, as shown
in Fig. 5(b), a further long temporal average is needed in
order to pin down �, with the resulting value being small in
comparison with the rms velocity; from Fig. 5(b) it can be
seen that the long-time average value of � is given by �� �
0:05, whereas urms � 60. For S ¼ 1=3, when the influence
of the shear on the flow is by no means negligible, there is
essentially no difference in the behavior of � from that
when S ¼ 0 ; as can be seen in Figs. 5(c) and 5(d) it is again
characterized by large fluctuations and the same small
mean. We also tried to determine the emf in the case of S ¼
5=3 (when there is small-scale dynamo action), both with
and without a weak imposed field; these gave almost the
same result, being characterized by substantial temporal
fluctuations, and thus rendering meaningless the extraction
of a mean emf (and hence �) for the former case.

Having thus shown that the introduction of a large-scale
shear flow does indeed promote vigorous large-scale dy-
namo action, we now return to the four possibilities dis-
cussed earlier. As indicated above, � is essentially
unchanged by the shear flow, so we can rule out possibility
(i). For a conventional �! dynamo model we expect the

growth rate to vary either as S1=2 (for a disturbance of fixed

wave number) or S2=3 (if the optimal wave number is
permitted in the system). Our calculations show that once
dynamo action sets in then, for a range of S, the growth rate
varies linearly with S; thus possibility (ii) is also incon-
sistent with the results. Both remaining possibilities would
seem to allow the growth rate to be linearly proportional to
S [15,19]. However, distinguishing between the two is far
from straightforward. Although the physical mechanisms
appear quite distinct, they are both manifested as non-
diffusive contributions to the turbulent diffusivity tensor
�ijk.

We have demonstrated conclusively that the flow result-
ing from the interaction of a large-scale shear flow and

turbulent rotating convection can lead to large-scale dy-
namo action, i.e., the generation of magnetic fields with a
significant component of energy on scales large compared
with that of the convective cells. This may be significant in
understanding the generation of large-scale fields in astro-
physical bodies. It is important to note that this large-scale
field generation can be explained within the kinematic
framework. As such, our work is related to that of Yousef
et al. [20,21], who consider kinematic dynamo action in
sheared, forced turbulence and obtain a similar relation
between the growth rate and S. The mechanism we have
described is very different from that discussed in [22], in
which the evolution of a large-scale magnetic field com-
ponent is attributed to a boundary flux of magnetic helicity
and is entirely a nonlinear effect. In this Letter we have
concentrated on the regime in which the convection,
although fairly vigorous, does not induce dynamo action
of itself. Thus the magnetic Reynolds numbers involved
are fairly modest. Obviously it is also of interest to inves-

FIG. 4. Horizontal power spectra for the magnetic field in both
the kinematic (dashed) and dynamic (solid) regimes. In
(a) S ¼ 5=3, Ra ¼ 150 000; in (b) S ¼ 0, Ra ¼ 1 000 000; in
both cases Ta ¼ 500 000. The spectra were computed over the
interior region of the domain (0:06< z < 0:94). The arbitrary
amplitudes of the kinematic spectra have been scaled so as to be
on the same plot.

FIG. 3. Snapshots of horizontal slices of the temperature pro-
file near the upper boundary for the sheared convective basic
state; S ¼ 5=3 (left) and S ¼ 5 (right).
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tigate the role of shear on the small-scale dynamo action
that sets in at higher Rm and for which the underlying
mechanism is related to local stretching and folding prop-
erties of the flow, characterized, for example, by Lyapunov
exponents and cancellation exponents [23], rather than
helicity. Our results on this will be presented in a future
paper.
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[22] P. J. Käpylä, M. J. Korpi, and A. Brandenburg, Astron.

Astrophys. 491, 353 (2008).
[23] Y. Du and E. Ott, J. Fluid Mech. 257, 265 (1993).

FIG. 5. (a) Longitudinal � effect versus time for S ¼ 0; (b) ��,
the cumulative temporal average of �, for S ¼ 0; (c) � for S ¼
1=3; (d) �� for S ¼ 1=3.
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