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We analyze the beating between intrinsic frequencies that are simultaneously generated by a modu-

lation (Turing) instability in a nonlinear extended system. The model studied is that of a coherently driven

photonic crystal fiber cavity. Beating in the form of a slow modulation of fast intensity oscillations is

found to be stable for a wide range of parameters. We find that such beating can also be localized and

contain only a finite number of slow modulations. These structures consist of dips in the amplitude of the

fast intensity oscillations, which can either be isolated or regularly spaced. An asymptotic analysis close to

the modulation instability threshold allows us to explain this phenomenon as a manifestation of

homoclinic snaking for dissipative localized structures.
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One of the most basic and useful experiments in physics
is to superimpose two sinusoidal signals with similar fre-
quencies and produce beating—modulation of the mean
frequency by an envelope at the difference frequency. An
everyday example of this is the moiré pattern produced by
folding a sheer window curtain onto itself. This slow
modulation can be particularly useful for metrology pur-
poses: in the space domain, moiré allows one to monitor
micromechanical deformations [1] while temporal beating
can be used to completely characterize ultrashort optical
pulses [2]. Usually, the two signals at the origin of beating
are generated externally. In this Letter, however, we study
numerically and analytically the situation where these
emerge spontaneously out of a modulation instability
(MI) with threshold. This instability is commonly referred
to as Turing instability in chemistry and in biology. The
physical setting we have in mind for this study is that of an
optical cavity containing a photonic crystal fiber (PCF). In
this system, it was shown that two distinct frequencies are
generated at the instability threshold [3]. Such a situation is
not uncommon in nonlinear optics. Other examples are the
double-pass optical loop studied in [4,5], the broad area
two-photon resonant Kerr cavity [6], and broad area cav-
ities with nonlocal interactions [7]. Another two-
dimensional example is the model proposed in [8] for
Faraday waves. In the last three examples, beating is
spatial rather than temporal and could therefore involve
more than one dimension. We find that, while fast oscil-
lations at the mean frequency do emerge past the MI
threshold, the accompanying slow modulation sets in
only locally; see Fig. 1. In other words, the beating is
localized. This phenomenon is robust, stable, and results
from the nonlinear saturation that follows the onset of MI.
In addition, the number of slow modulations (four in the
example of Fig. 1) depends on the initial conditions, which

indicates very rich dynamics. We explain this finding
through an asymptotic analysis near the MI threshold.
Inside a PCF cavity, the envelope of the electromagnetic

field is governed by [3]

@c

@t0
¼ S� ð1þ i�Þc þ ijc j2c � iB2

@2c

@�02
þ iB4

@4c

@�04
:

(1)

In this equation, the t0 dependence corresponds to the slow,
average evolution of c from one cavity round trip to the
next, while �0 corresponds to its fast variations; the pa-
rameter S is real and proportional to the injected field, � is
the cavity detuning, and B2 and B4 account for second and
fourth order chromatic dispersion, respectively. Finally,
ijc j2c is the Kerr nonlinearity. The last term in (1) is
usually omitted in fiber cavity models [9], but the disper-
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FIG. 1. Snapshots of the numerical integration of (1) for vari-
ous values of t0 with S¼1:02185, � ¼ 0:8, B2¼�1, B4¼0:2.
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sion characteristics of PCF may invalidate this approxima-
tion [10,11], even if B4 is small. On the other hand, we
focus on the situation where third-order dispersion is neg-
ligible: this somewhat simplifies the complicated dynamics
we are about to describe. Moreover, this can be realized
without difficulty with PCF.

We start by assuming that dispersion is anomalous.
Thus, the coefficient B2 is negative and it can be scaled
down to �1 by an appropriate choice of unit for �0. In that
case, given the conventional PCF dispersion coefficients
�2;4, group velocity v, and the cavity power loss rate �,
one has

B2 ¼ �1; B4 ¼ ��4=ð12�2
2vÞ; (2)

and we will assume in addition that B4 > 0.
At the MI threshold, the constant solution becomes

unstable with respect to perturbations of the form
expði�U�

0Þ and expði�L�
0Þ. The two dynamical frequen-

cies are given by

�2
L;U ¼ 1

2B4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð�� 2ÞB4

p
2B4

: (3)

This formula, incidentally, shows how important B4 can be
despite its smallness.

As a first step to analyze the dynamics, we perform the
linear stability analysis of the homogeneous steady state

solution of (1). The steady state is given by c ¼ffiffiffi
I

p
expði�Þ, where

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð�� IÞ2

q ffiffiffi
I

p
; tan� ¼ I� �; (4)

and can thus be parametrized by the intracavity intensity I.
The MI threshold is located at IMI ¼ 1. Anticipating a
weakly nonlinear analysis near this threshold, and focusing
on the ‘‘beating limit’’ �U � �L, we introduce a small
parameter � and set

I ¼ 1þ 2�2�; � ¼ 2� 1=ð4B4Þ þ 2�: (5)

The result of the linear stability analysis in that limit is
depicted in Fig. 2. In particular, we note that by scaling �
as above, we get �U;L ��C � ffiffiffi

�
p

, i.e., a mean frequency

�C ¼ 1=
ffiffiffiffiffiffiffiffi
2B4

p
and a beat note 2

ffiffiffi
�

p
. The other scalings are

standard: the growth rate of unstable perturbations isOð�2Þ
and frequency bands of Oð�Þ width become unstable
around �U and �L. These observations suggest to seek a
multiple-scale solution of the form

c � ei�
� ffiffiffi

I
p þX

n

�nfnðt; s; �Þ
�
; (6)

where

t ¼ 2�2t0; s ¼ �C�
0; � ¼ ffiffiffi

�
p

�0:

In addition, � should be expanded as �0 þ ��1 þ � � � in
order to satisfy (4), given (5).

Substituting the asymptotic expansion (6) into (1), we
obtain, at Oð�Þ, the linear problem

L f1 �
�
1þ @

@s2

�
2
f1 þ 4B4ðif1 þ �f1Þ ¼ 0;

where the overbar is used to denote complex conjugate.
The above equation possesses the nontrivial solution

f1 ¼
ffiffi
i

p
uðt; �Þ cosðsÞ; (7)

where u is real and to be determined at subsequent orders
of the analysis. Note that for any complex function wðt; �Þ,
one has L½w cosðsÞ� � iL½w cosðsÞ� ¼ 0. Hence the solv-
ability condition for the equation Lf ¼ g cosðsÞ is that
g� i �g vanish. This condition is automatically satisfied
for the problem obtained atOð�2Þ, and we find at this order
that

f2¼2B4½ð�2� iÞþ4ð1þ iÞB4�u2

þ2B4

81
½ð�18�9iÞþ4ð1þ iÞB4�u2 cosð2sÞ
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p �
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þu

�
cosðsÞ:

Finally, evaluating the solvability condition at Oð�3Þ, we
obtain

@u

@t
¼ �u� �u3 �

�
1þ @2

@�2

�
2
u; (8)

where � ¼ 2B4ð171� 326B4Þ=81.
We have thus shown that the envelope u satisfies the

well-known Swift-Hohenberg equation. The derivation of
(8) is a considerable progress with respect to (1), as it has
already been the subject of numerous studies in the frame
of pattern formation. On the other hand, to obtain (8) near
the MI threshold is also somewhat surprising because one
usually expects a Ginzburg-Landau equation in that limit.
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FIG. 2 (color online). Linear stability analysis of the solution
(4) for the parameters of Fig. 1. (a) Instability domain in the�-S
plane. (b) Growth rate � of perturbations as a function of
frequency near MI threshold.
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Actually, if �U and �L are well apart, the resulting
asymptotic description is a pair of coupled Ginzburg-
Landau equations, each governing the amplitude of oscil-
lations at one of the two frequencies. Let us remark that (8)
is valid only if its cubic term is saturating, i.e., if B4 <
B�
4 ¼ 171=326.
Equation (8) shows that two frequencies become un-

stable at � ¼ 0, in agreement with the MI behavior of (1).
An homogeneous solution, corresponding to oscillation at
�C, exists for � ¼ 1 and is stable for � > 1:5. On the other
hand, (8) admits localized solutions [12–14], which have
been linked to localized structures in optics [15,16], solid
mechanics [17,18], and fluid dynamics [19–21]. The bifur-
cation diagram associated to these solutions generally
assumes an infinite series of folds whereby the localized
state acquires or loses a pair of peaks, as shown in Fig. 3. A
convenient measure of these solutions is the ‘‘energy’’N of
their oscillations. One way to define it is

N ¼ ffiffiffiffi
�

p Z 1

�1
ju� u1jd�;

where u1 is the homogeneous (�C) solution. With such a
norm, the folds of the bifurcation diagram generally as-
semble into two interweaved snaking curves. The phe-
nomenon giving rise to localized solutions is thus often
referred to as homoclinic snaking. In most cases, the two
aforementioned snaking curves delimit a finite range of
parameters where localized states exist—the ‘‘pinning
range.’’ In the special case of Eq. (8), however, the snakes
extend to infinity [22], and so does the existence domain of
localized states. Looking back at expression (7), we see
that localized solutions of (8) actually describe localized
beating solutions in the original model (1), as illustrated
schematically in Fig. 4. Consequently, localized beating
can be understood as an indirect manifestation of homo-
clinic snaking. The localized beating is between the fre-

quencies �L and �U and happens over a background
oscillating at the central frequency �C.
It should be emphasized that (8) is only valid for � 	 1.

Hence, given that I ¼ 1þ �2�, the range of existence
of localized beating solutions is not necessarily large in
the full model, even though it is infinite in the Swift-
Hohenberg limit. Nevertheless, we found that key features
of homoclinic snaking, such as the multiplicity of localized
beating solutions, are preserved in the original model.
Moreover, in Fig. 3, we see that the minimum value of �
to observe localized beating is given by �LB � 1:8.
Substituting these values into (5), we obtain a nonlinear
threshold for localized beating: ILB � 1þ 0:9½�� 2þ
1=ð4B4Þ�2. This is a finite distance above the MI threshold.
For the parameters of Fig. 1, for instance, we obtain ILB ¼
1:002 25, and the corresponding value of the injection
parameter is SLB ¼ 1:021 39. This is in very good agree-
ment with our numerical simulations of (1). In addition, the
beating period of 20 in Fig. 1 corresponds to the theoretical
beat note equal to 0.32. For these simulations, we used the
implicit Euler method with discretization steps 	t0 ¼ 0:78
and 	�0 ¼ 0:25 in the t0 and �0 variables, respectively,
together with periodic boundary conditions in �0.
If, instead of the above analysis, we assume that chro-

matic dispersion is normal, B2 ¼ þ1, then MI can still
occur but this time with B4 < 0. In that case, only one
frequency is found to be destabilized at the MI threshold,
making Fig. 2 and hence (8) inappropriate to discuss the
dynamics. Nevertheless, we still find localized beating, as
shown in Fig. 5. The multiplicity of solutions is strongly
reminiscent of homoclinic snaking, although the period of
the slow modulation now suggests the dominance of two
modes within a single, narrow band of unstable frequen-
cies. This shows that localized beating is a very robust
phenomenon and that it exists well outside the asymptotics
limits where our analytical results strictly hold.
We now discuss some possible experimental parameter

values relevant to the present investigation. The general ex-
perimental setup is similar to that of previous experimental
investigations of MI in fiber cavities, such as [23,24]. Let
us assume a PCF with dispersion coefficients �2 ¼
�1:45
 10�29 s2 m�1 and �4 ¼ 1:15
 10�55 s4 m�1.
At each cavity round trip, a fraction of the electromagnetic
power is lost through an output coupler with an amplitude
transmission coefficient T. Given the cavity length L, the

FIG. 3. Left: Bifurcation diagram for the localized structures
of (8). Solid lines indicate stable solutions, broken lines indicate
unstable solutions. The bifurcation curves extend to arbitrary
large and positive values of �. Right: Representative solutions of
the various branches on the left.

FIG. 4 (color online). Schematic example of a localized solu-
tion of the amplitude Eq. (8) and the corresponding localized
beating solution of (1), as constructed from (7).
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power loss per unit time is therefore � ¼ T2v=L, and we
thus have �=v ¼ T2=L in (2). With the above PCF char-
acteristics and the typical value T ¼ 0:35, a cavity length
L ¼ 27:9 m yields B4 ¼ 0:2. Interestingly, the critical
value B4 ¼ B�

4 could be reached by reducing the cavity
length to L ¼ 10:64 m. In this regard, we note that as B4

approaches and surpasses B�
4, Eq. (8) should generally be

completed by a quintic nonlinearity. This, in turn, is known
to result in a finite pinning range [25].

In conclusion, we have revisited the concept of beating
for nonlinear extended systems where the source of oscil-
lation is a modulation instability. Through the nonlinearity,
the beating can self-organize and become localized in time.
By means of a multiple-scale reduction near the instability
threshold, we have been able to link this phenomenon with
the homoclinic snaking that takes place in the Swift-
Hohenberg equation. Moreover, since our analysis is local,
this reduction should in principle hold for any system
whose linear stability is as depicted in Fig. 2. Such systems
have not been particularly sought after in the past, but the
present study certainly prompts one to investigate under
which physical, chemical, or biological circumstances a
modulation instability with two frequencies can arise.
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