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A massively parallel deterministic method is described for reconstructing shift-invariant complex

Green’s functions. As a first experimental implementation, we use a single phase contrast x-ray image to

reconstruct the complex Green’s function associated with Bragg reflection from a thick perfect crystal.

The reconstruction is in excellent agreement with a classic prediction of dynamical diffraction theory.
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The Green’s function in coherent optics is used to de-
scribe the effect of an optical system (e.g., propagation
through free space) on the phase and amplitude of a com-
plex exit surface wave (ESW). The Green’s function, how-
ever, being a complex quantity, cannot be measured di-
rectly despite the practical importance of such a
measurement.

In this Letter, we will present a general approach which
allows us to reconstruct complex, shift-invariant Green’s
functions using a method inspired by holography. In our
approach, the holographic interference between reference
and scattered beams is replaced with a general optical
system which causes phase and amplitude contrast in the
associated output field. By recording a hologram of a
known object, we reconstruct the complex Green’s func-
tion of an unknown optical system.

The ability to reconstruct Green’s functions from experi-
mental data has applications in a broad range of physics
disciplines. For example, reconstructing the Green’s func-
tion in a holography experiment using electromagnetic or
matter wave fields would allow the Helmholtz or
Schrödinger propagators, respectively, to be reconstructed
[1]. Furthermore, one can imagine the importance of di-
rectly reconstructing the complex Green’s function asso-
ciated with isoplanatic regions [2] of lenses in light or
electron microscopy to diagnose aberrations [3] or the
Green’s function associated with linear Fresnel zone plates
used in nanoprobe focusing of x rays [4].

To demonstrate our Green’s-function reconstruction ap-
proach, we will present the experimental reconstruction of
the x-ray Green’s function associated with Bragg reflection
from a thick perfect crystal. While we have chosen to
exemplify this method on a specific coherent x-ray appli-
cation, we stress that it can be used for coherent electro-
magnetic or matter wave fields and a wide class of shift-
invariant Green’s functions.

Further to our previous comments on the applications of
Green’s-function reconstruction, as we shall show in this
Letter, by experimentally reconstructing the Green’s func-
tion associated with diffraction from a perfect crystal, we
can verify the classic predictions of the dynamical diffrac-
tion theory of Darwin, Ewald, and von Laue [5]. At the
same time, our approach can be used to give an analytic so-
lution to the famous one-dimensional phase problem first
formulated by Pauli in the context of quantum mechanics
[6].
The essence of our approach to reconstruct Green’s

functions is illustrated in the following example.
Consider the classic description of wave-field evolution
in terms of a shift-invariant Green’s function G [7]:

�ðrÞ ¼
Z

Gðr� r0Þc ðr0Þdr0; (1)

where � and c describe coherent complex scalar wave
fields and r is a position vector. The problem is to solve Eq.
(1) for G given knowledge of j�j and c ; in general, this is
a highly nonlinear inverse problem. The problem can be
linearized without compromising the generality of G by
choosing c to have the property that c ðrÞ ¼ 1þ �ðrÞ,
where j�ðrÞj � 1—the so-called ‘‘weak object’’ property
[3]. Under these conditions, it is possible, as we shall show,
to solve Eq. (1) for G analytically.
We now turn to the specific problem of reconstructing

the Green’s function associated with hard-x-ray Bragg
reflection from a perfect crystal. The analysis that follows
is easily generalizable to the other optical systems men-
tioned previously. The Green’s function of perfect crystal
Bragg reflection [5] is one-dimensional, which means it
can be recovered from a single two-dimensional intensity
measurement (reconstruction of two-dimensional complex
Green’s functions require two measurements, in general).
Before we turn to the analysis, a brief comment that

speaks to the utility of Green’s-function retrieval: While
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we have chosen this system as a means for demonstrating
our Green’s-function retrieval technique, we note that in
the regime of kinematic diffraction from the crystal our
approach unambiguously solves the famous one-
dimensional phase problem hitherto partially addressed
by the following techniques: Hilbert transform [8], meth-
ods based on photoelectron emission due to x-ray standing
waves [9] and Fourier analysis techniques [10].

With reference to Fig. 1, we now explain the reconstruc-
tion algorithm in more detail [11]. Depicted is a planar
monochromatic scalar hard-x-ray wave field propagating
through the weak object and imaging system to the two-
dimensional detector. The inset gives the specific case for
symmetric Bragg reflection from a perfect crystal. A sim-
ple coordinate transform, the details of which are omitted
for clarity, renders the diffracted beam collinear with the
incident beam.

The weak object ESW c ðr?; z ¼ 0Þ is the product of the
incident plane wave and its complex transmission function.
The weak object is composed of a single material with
refractive index decrement �, attenuation coefficient �,
and projected thickness Tðr?Þ [12]. We require

c ðr?; 0Þ ¼ exp½�knTTðr?Þ�
� exp½�knT �T�½1� knT�Tðr?Þ�; (2)

where nT ¼ i�þ �, r? ¼ ðx; yÞ, k? ¼ ðkx; kyÞ is the dual
to r?, k ¼ 2�=� ¼ jðk?; kzÞj, � is the radiation wave-
length, and Tðr?Þ ¼ �T þ �Tðr?Þ, where �T and �T denote
average thickness and deviation from the average thick-
ness, respectively. The approximation in Eq. (2) is valid
when j�k�Tðr?Þj � 1, j�k�Tðr?Þj � 1, and we now
briefly digress from the analysis to show how this may be
achieved in practice.

Splitting the arguments of Eq. (2) into a real part � ¼
k��T and an imaginary part ’ ¼ �k��T, it may be
written [13]

c ðr?; 0Þ ¼ expði �’� ��Þ½1þ i�’ðr?Þ ���ðr?Þ�: (3)

It is necessary that j��j and j�’j be of the same order of
magnitude; however, for most materials, the x-ray refrac-
tive index decrement � is 3 orders of magnitude greater
than the attenuation coefficient �. We overcome the prob-
lem by allowing the wave field to propagate before it is
incident on the crystal [12,14–18]. The distance z0 (see
Fig. 1) is increased so that the curvature in the wave front,
due to the weak object, causes neighboring rays to inter-
fere, producing intensity variations that are tantamount to
increasing�. For small z, the propagation-induced contrast

is proportional to the transverse Laplacian r2
? ¼ @2

@x2
þ @

@y2

of �’ðr?; 0Þ [12] and can be considered an effective
attenuation over the plane z ¼ z0.
Returning to the main thread of the analysis, Eq. (3)

makes clear the connection of this approach to holography:
Theweak object ESW c ðr?; z ¼ 0Þ is the sum of the direct
beam and a known weak perturbation. Reflection from the
crystal will modulate the amplitude and phase of the field,
and the detector records the hologram. The hologram
evidently contains the response of the imaging system to
all spatial frequencies present in c , which allows a mas-
sively parallel interrogation of a wide range of reciprocal
space simultaneously. We will now show how to invert the
hologram to recover the Green’s function.
The intensity recorded on the detector is [13]

Iðr?;z0þz1;!Þ¼ �Iðj ~Gð0;!Þj2þ2Ref ~G�ð0;!Þ
�
Z
Gðr?�r0?;!Þ½i�’ðr0?Þ

���ðr0?Þ�dr0?gÞ: (4)

Here Iðr?; zÞ ¼ j�ðr?; zÞj2, ! is the angle between the
direct x-ray beam and crystal surface (a constant),� and ’
now refer to attenuation and phase of the propagated wave
field, respectively, � denotes complex conjugation, and �I ¼
expð�2 ��Þ. Terms quadratic in the small quantities�� and
�’ are discarded as negligible, together with the effects of
short propagation distance z1—valid for large Fresnel

numbers [12]. ~Gð0; !Þ is a single complex number (given
that ! was held constant during the measurement) which
represents the ratio of dc values of � to c , a known
quantity.
With a view to deriving an expression for Gðr?;!Þ, we

introduce the known contrast function Cðr?; z;!Þ ¼
Iðr?; z;!Þ= �I � j ~Gð0; !Þj2 and scale the Green’s function

�ðr?;!Þ ¼ Gðr?;!Þ ~G�ð0; !Þ. We will now use a one-
dimensional Fourier transform, and so to clarify the analy-
sis we write the vectors r? and k? explicitly in terms of
their Cartesian components. Equation (4) becomes, after a
one-dimensional Fourier transform,

FIG. 1 (color online). Experimental reconstruction of a generic
complex Green’s function. Coherent plane waves illuminate a
weak object before propagating a distance z0 to the imaging
system. The inset shows the imaging system for the case of x-ray
Bragg reflection from a thick perfect silicon crystal. The field
exiting the imaging system propagates a further distance z1 to the
detector. This single intensity image may be deterministically
inverted to recover the complex Green’s function associated with
the shift-invariant imaging system.
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� ~Cðx; z0 þ z1; ky;!Þ ¼ ½ ~��ðx; kyÞ � i ~�’ðx; kyÞ�~�ðky; !Þ
þ ½ ~��ðx; kyÞ þ i ~�’ðx; kyÞ�
� ~��ð�ky; !Þ; (5)

where the Fourier transform is defined by ~Gðx; kyÞ ¼R
Gðx; yÞ expð�ikyyÞdy.
Equation (5) is linear in the unknown complex function

~�ðky; !Þ, which can be solved for using any two discrete

lines ði; jÞ of the image:

~�e
R

~�o
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(6)

where R, I, e, and o refer to the real, imaginary, even, and
odd parts of the relevant function, respectively. The solu-
tion makes use of an a priori known symmetry that in the
case of a laterally homogeneous crystal the Green’s func-
tion is one-dimensional. In this case, a pair of discrete lines
of the image contains all of the information we seek to
retrieve; since there are many such lines in the output of a
conventional two-dimensional detector, we may perform a
suitable average to greatly reduce noise artifacts. Equa-
tion (6) is the unambiguous deterministic solution for the
complex Green’s function we were seeking, and we now
present the experimental reconstruction applied to a thick
perfect silicon crystal.

The problem, as stated previously and solved by Eq. (6),
is to reconstruct G given c ðr?; z ¼ z0Þ and j�ðr?; z ¼
z0 þ z1Þj, and so we must now account for how the two
latter known quantities are measured. Clearly, j�ðr?; z0 þ
z1Þj can be measured by recording the intensity in the
manner specified by Fig. 1, but c ðr?; z ¼ z0Þ is a complex
quantity, the phase of which cannot be measured directly.
The magnitude jc ðr?; z0Þj is easily measured by placing
the detector at the plane z0—this was done, and Fig. 2(a) is
the result. The phase of c ðr?; z0Þ was calculated from
Fig. 2(a) using the single-image transport-of-intensity
phase-retrieval algorithm [19], and the result is shown in

Fig. 2(b). The remaining input j�ðr?; z0 þ z1Þj discussed
previously is shown in Fig. 2(c).
The weak object was fabricated by etching a binary

pattern [20] of 0:8 �m depth (400 nm lateral resolution)
into a 0.8 mm thick SiO2 substrate using electron beam li-
thography. The aperiodic pattern ensures that the weak ob-
ject ESW will have a continuous spatial Fourier spectrum.
The experiments were conducted at the BL20XU undulator
beam line at SPring-8 (Japan) using 20 keV x rays from a
double Si (111) monochromator. The beam size was ap-
proximately 4ðhorÞ � 2ðverÞ mm at 245 m from the source;
z0 ¼ 1:2 m and z1 ¼ 0:06 m. Images were recorded using
a Hamamatsu CCD detector coupled to an optical lens and
phosphor screen with a 0:9 �m effective pixel size and
2ðhorÞ � 1:3ðverÞ mm field of view. The x-ray beam from
the undulator source is partially coherent, and this has been
shown to deleteriously affect reconstruction algorithms
that assume fully coherent incident radiation [21].
Figure 2(c) was measured with the crystal slightly de-

tuned from the (111) Bragg reflection so that 70% of the
direct beam was reflected. The vertical elongation of
Fig. 2(c) indicates the crystal was cut asymmetrically by
0.8� to the (111) plane—the correction of which was
accounted for in the reconstruction algorithm. Figure 2
represents all of the inputs to the algorithm of Eq. (6)
that allow reconstruction of G.
The results of the reconstruction are presented in

Figs. 3(a) and 3(b), which show the reconstructed squared
modulus and phase of the thick perfect silicon analyzer
crystal Green’s function using Eq. (6) compared to the
classic prediction of dynamical diffraction [5]. The two
are in excellent agreement. The discrepancy between the
predicted Green’s function and the reconstruction merits
further discussion, which we turn to now.
The gray shaded regions in Fig. 3 show the condition

number of the inverse matrix in Eq. (6) and represent the
region of validity of the reconstruction. A large condition
number indicates that the output of Eq. (6) varies signifi-
cantly upon a small change in the input, and so at this point
the solution is numerically unstable. At high spatial fre-
quencies, the large condition number is due to the low
power scattered into these frequencies. The large condition

FIG. 2 (color online). (a) Intensity measurement prior to reflection from the crystal showing only propagation phase contrast;
(b) calculated phase corresponding to (a); (c) measured intensity image showing the image of the weak object after reflection from a
thick perfect silicon crystal (111) reflection. The crystal was slightly detuned from the Bragg condition so that it reflects 70% of the
direct beam.
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number around the 000 point in Figs. 3(a) and 3(b) is due to
the manner in which the algorithm reconstructs the Green’s
function by separating it into even and odd functions. The

odd functions in Eq. (6) (~�o
R,

~�o
I ) must approach zero in the

vicinity of 000, and the resulting matrix inversion at these
angular space points renders the solution more susceptible
to noise in the experimental data.

The angular range of the single image reconstruction is
Nyquist limited by the detector pixel size. The angular
resolution of the reconstruction is inversely proportional
to the number of pixels used in the image. The reconstruc-
tions in Fig. 3 were calculated using a 512 square pixel
subimage of Fig. 2 yielding an angular resolution at least
equal to high resolution x-ray diffraction. This approach is
sensitive to misalignment of the images which must be
achieved to single pixel accuracy.

In conclusion, we have demonstrated the validity of our
new technique for reconstructing shift-invariant complex
Green’s functions. The reconstructed Green’s function as-
sociated with reflection from a perfect single crystal of
silicon quantitatively agrees with the classic prediction of
the dynamical theory of x-ray diffraction for perfect crys-
tals [5]. While the experiment we have presented is spe-
cifically related to crystallography, we note that the
technique is applicable to a very wide class of complex

Green’s functions. The technique as demonstrated here
uses only a single intensity image or probability density,
after the weak object has been characterized, and as such is
suitable to tomographic and real-time applications.
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FIG. 3 (color online). (a) jGðky; !Þj2—squared magnitude of
the reconstructed Green’s function for the silicon analyzer
crystal (solid black line) and theoretical prediction (broken red
line), (b) Arg½Gðky;!Þ�—phase corresponding to (a). The con-

dition number of the solution is shown for each angular space
point.
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