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Although the Sun’s torsional oscillation is believed to be driven by the Lorentz force associated with the

sunspot cycle, this oscillation begins 2–3 yr before the sunspot cycle. We provide a theoretical explanation

of this with the help of a solar dynamo model having a meridional circulation penetrating slightly below

the bottom of the convection zone, because only in such dynamo models does the strong toroidal field

form a few years before the sunspot cycle and at a higher latitude.

DOI: 10.1103/PhysRevLett.102.041102 PACS numbers: 96.60.Hv, 96.60.Jw

There is a small periodic variation in the Sun’s rotation
with the sunspot cycle, called torsional oscillations. While
this was first discovered on the Sun’s surface [1], the nature
of torsional oscillations inside the solar convection zone
was later determined from helioseismology [2–8]. Several
authors [9–12] developed theoretical models of torsional
oscillations by assuming that they are driven by the
Lorentz force of the Sun’s cyclically varying magnetic
field associated with the sunspot cycle. If this is true,
then one would expect the torsional oscillations to follow
the sunspot cycles. The puzzling fact, however, is that the
torsional oscillations of a cycle begin a couple of years
before the sunspots of that cycle appear and at a latitude
higher than where the first sunspots are subsequently seen.
At first sight, this looks like a violation of causality—a
classic case of the effect preceding the cause. Our aim is to
explain this puzzling observation, for which no previous
theoretical model offered any explanation. In the models of
Covas et al. [10] and Rempel [12], the theoretical butterfly
diagrams extend to unrealistically high latitudes of about
60�, and the low-latitude branches of torsional oscillations
follow the butterfly diagrams closely, not starting at higher
latitudes.

Let us summarize some of the other important character-
istics of torsional oscillations, which a theoretical model
should try to explain. (i) Apart from the equatorward-
propagating branch which moves with the sunspot belt
after the sunspots start appearing, there is also a
poleward-propagating branch at high latitudes. (ii) The
amplitude of torsional oscillations near the surface is of
the order 5 m s�1. (iii) The torsional oscillations seem to be
present throughout the convection zone, though they ap-
pear more intermittent and less coherent as we go deeper
down into the convection zone (see Figs. 4, 5, and 6 in
Howe et al. [7]). (iv) In the equatorward-propagating
branch at low latitudes, the torsional oscillations at the
surface seem to have a phase lag of about 2 yr compared
to the oscillations at the bottom of the convection zone (see
Fig. 7 in Howe et al. [7]).

The last property of torsional oscillations listed above
seems to suggest that the bottom of the convection zone is

the source of the oscillations, which then propagate up-
wards. Property (iii) then seems puzzling and contrary to
the common sense. One would expect the oscillations to be
more coherent near the source, becoming more diffuse as
they move upward further away from the source. The
observations indicate the opposite of this. We shall discuss
a possible explanation for this observation as well. Spruit
[13] proposed thermal effects near the surface to be the
origin of torsional oscillations—an idea which prop-
erty (iv) seems to rule out [7].
While there may not yet be a complete consensus, the

majority of dynamo theorists believe that the sunspot cycle
is produced by a flux transport dynamo, in which the
meridional circulation carries the toroidal field produced
from differential rotation in the tachocline equatorward
and carries the poloidal field produced by the Babcock-
Leighton mechanism at the surface poleward [14–21].
Since the differential rotation is stronger at higher latitudes
in the tachocline than at lower latitudes, the inclusion of
solarlike rotation tends to produce a strong toroidal field at
high latitudes rather than the latitudes where sunspots are
seen [17,18]. Nandy and Choudhuri [19] proposed a hy-
pothesis to overcome this difficulty. According to them, the
meridional circulation penetrates slightly below the bottom
of the convection zone, and the strong toroidal field pro-
duced at the high-latitude tachocline is pushed by this
circulation into stable layers below the convection zone
where magnetic buoyancy is suppressed and sunspots are
not formed. Only when the toroidal field is brought into the
convection zone by the meridional circulation rising at
lower latitudes does magnetic buoyancy take over and sun-
spots finally form. It may be noted that there is a contro-
versy at the present time whether the meridional circula-
tion can penetrate below the convection zone—arguments
having been advanced both against [22] and for it [23].
If the Nandy-Choudhuri hypothesis (hereafter NC hy-

pothesis) is correct, then the toroidal field of a particular
cycle first forms at a relatively high latitude some time
before the sunspots of the cycle would start appearing.
Assuming that the Lorentz force of the newly formed
toroidal field at the high latitude can initiate the torsional
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oscillations, the NC hypothesis provides a natural way to
explain how the torsional oscillations begin at high lati-
tudes before the appearance of the sunspots of the cycle.
Our dynamo model based on the NC hypothesis correctly
explains the onset of torsional oscillations at the high
latitude before the beginning of the sunspot cycle. We, in
fact, argue that the early onset of torsional oscillations
provides compelling evidence in support of the NC
hypothesis.

Our theoretical model is based on a mean field approach.
However, we know that the magnetic field is highly inter-
mittent within the convection zone, and we need to take
account of this fact when calculating the Lorentz force due
to the magnetic field. Since the convection cells deeper
down are expected to have larger sizes, Choudhuri [24]
suggested that the magnetic field within the convection
zone would look as shown in Fig. 1 of that paper.
Demanding that the vertical flux tubes give rise to hori-
zontal flux tubes with magnetic field 105 G (as suggested
by flux rise simulations [25–28]) after stretching in the
tachocline, the magnetic field inside the vertical flux tubes
at the bottom of the convection zone is estimated to be of
the order 500 G [24]. This scenario provides a natural
explanation for properties (iii) and (iv) of torsional oscil-
lations listed above. Presumably, the torsional oscillation
gets initiated in the lower footpoints of the vertical flux
tubes, where the Lorentz force builds up due to the pro-
duction of the azimuthal magnetic field. This perturbation
then propagates upward along the vertical flux tubes at the
Alfvén speed. If the magnetic field inside the flux tubes is
500 G, then the Alfvén speed at the bottom of the convec-
tion zone is of the order 315 cm s�1, and the Alfvén travel
time from the bottom to the top turns out to be exactly of
the same order as the phase lag of torsional oscillations

between the bottom of the convection zone and the solar
surface. We admit that the magnetic scenario sketched in
Fig. 1 of Choudhuri [24] and adopted here is not yet
established through rigorous dynamical calculations, and
a proper study of the propagation of disturbances through
such complex magnetic structures is unavailable. However,
an assumption of net upward propagation of magnetic
disturbances in spite of all of these complexities is not an
unreasonable ansatz, which is justified by the success of the
theoretical model in matching otherwise unexplained as-
pects of observational data. Since the magnetic field at the
bottom is highly intermittent and the velocity perturbations
associated with the torsional oscillations are likely to be
concentrated around the magnetic flux tubes, we expect the
torsional oscillations to be spatially intermittent at the
bottom of the convection zone, as seen in the observational
data [7]. Since the magnetic field near the surface is less
intermittent, the torsional oscillation driven by the Lorentz
stress also appears more coherent there. We thus have the
puzzling situation that the torsional oscillations seem to
become more coherent as they move further away from the
source at the footpoints of flux tubes at the bottom of the
convection zone.
To develop the theoretical model of torsional oscilla-

tions, we extend our already published solar dynamo
model [20], in which the NC hypothesis has been incorpo-
rated. The basic dynamo code SURYAwhich is extended for
the present calculations is available upon request. Apart
from the time evolution equations for the toroidal and
poloidal components of the magnetic field which have to
be solved in the dynamo problem, we also have to solve an
additional simultaneous time evolution equation of the to-
roidal velocity component v�. This other equation, which

is essentially the � component of the Navier-Stokes equa-
tion, is
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where ðFLÞ� is the � component of the Lorentz force. We
use the stress-free boundary condition @v�=@r ¼ 0 at the
solar surface and take v� ¼ 0 at the bottom, although the
bottom boundary condition has no effect when the bottom
of the integration region is taken well below the tachocline
as we do. The kinematic viscosity � is primarily due to
turbulence within the convection zone and is expected to be
equal to the magnetic diffusivity. We use the exact same
profile of � as the profile of the diffusivity of the poloidal
field, which is shown in Fig. 4 of Chatterjee, Nandy, and
Choudhuri [20]. In other words, we assume the magnetic
Prandtl number to be 1. In order to ensure a period of 11 yr,
we choose some parameters in the dynamo equations
slightly different from what were used by Chatterjee,
Nandy, and Choudhuri [20], as listed in Table 1 of
Choudhuri, Chatterjee, and Jiang [29]. For the density �
appearing in (1), we use the analytical expression used by

Choudhuri and Gilman [25], which gives values of density
consistent with detailed numerical models of the convec-
tion zone.
If the magnetic field is assumed to have the form

B ¼ Bðr; �; tÞe� þ r� ½Aðr; �; tÞe��; (2)

then the Lorentz force is given by the Jacobian

4�ðFLÞ� ¼ 1

s3
J

�
sB�; sA

r; �

�
; (3)

where s ¼ r sin�. We, however, have to take some special
care in averaging this term, since this is the primary
quadratic term in the basic variables (A, B, and v�) and

has to be averaged differently from all of the other linear
terms. The effect of v� on the magnetic field is also

quadratic and has been added to the similar term giving
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the effect of differential rotation on magnetic fields in the
� component of the induction equation. The � component
of the Lorentz force primarily comes from the radial
derivative of the magnetic stress BrB�=4� (the term hav-

ing B�B� involves a � derivative and is smaller). This

stress arises when Br is stretched by differential rotation
to produce B� and should be nonzero only inside the flux

tubes. We assume that Br and B� are the mean field values,

whereas ðBrÞft and ðB�Þft are the values of these quantities
inside flux tubes. If f is the filling factor, then we have
Br ¼ fðBrÞft and B� ¼ fðB�Þft, on assuming the same

filling factor for both components for the sake of simplic-
ity. It is easy to see that the mean Lorentz stress is

f
ðBrÞftðB�Þft

4�
¼ BrB�

4�f
:

This suggests that the correct mean field expression for
ðFLÞ� is given by the expression (3) divided by f.

As pointed out by Chatterjee, Nandy, and Choudhuri
[20], the only nonlinearity in the dynamo equations comes
from the critical magnetic field Bc, above which the toroi-
dal field within the convection zone is supposed to be
unstable due to magnetic buoyancy. Jiang, Chatterjee,
and Choudhuri [30] found that we have to take Bc ¼
108 G (which is the critical value of the mean toroidal
field and not the toroidal field inside flux tubes) to ensure
that the poloidal field at the surface has correct values.
Once the amplitude of the magnetic field gets fixed this
way, we find that only for a particular value of the filling
factor f does the amplitude of the torsional oscillations
match observational values. Our calculations give a filling
factor f � 0:067, which is higher compared to the earlier
estimate of f � 0:02 by Choudhuri [24]. Theoretical val-
ues of velocity in all of our figures are computed by using
f ¼ 0:067. Apart from the usual meridional circulation
used in our model [20], we include a constant upward
velocity vr ¼ 300 cm s�1 to account for the upward trans-
port by Alfvén waves when solving our basic equation (1)
for v�. Note that this additional vr does not represent any

actual mass motion and does not have to satisfy the con-
tinuity equation which the meridional circulation satisfies.
Because of our lack of knowledge about this upward
transport, we assume the upward velocity to be indepen-
dent of depth and allow it to transport the magnetic stresses
from the bottom to the surface, where they freely move out
due to the stress-free boundary condition, mimicking what
we believe must be happening in the real Sun.

Figure 1 presents a comparison of theory with observa-
tions by putting the butterfly diagram of sunspots on the
time-latitude plot of torsional oscillations at the surface.
The theoretical plot correctly reproduces the initiation of
the low-latitude branch of torsional oscillations about 2 yr
before the sunspot cycle, starting at a latitude higher than
typical sunspot latitudes. Apart from the NC hypothesis,
the assumption of the upward advection of the perturba-
tions at Alfvén speed is crucial. On switching off the

Alfvén wave, even though the torsional oscillations begin
at a high latitude at the bottom of the convection zone
before the starting of the sunspot cycle, the disturbance has
to reach the surface through diffusion, and we do not see
the correct initiation of torsional oscillations at the surface.
We also note that the phase of the torsional oscillations
(i.e., regions of positive and negative v� in the time-

latitude plot) with respect to the sunspot cycle is repro-
duced quite well. On decreasing (increasing) the Alfvén
speed, the phase of the torsional oscillations with respect to
the butterfly diagram gets shifted towards the right (left).
While our main aim was to explain the properties of the
low-latitude branch of torsional oscillations, our theoreti-
cal model has reproduced the high-latitude branch as well,
without our having to do anything special for it. The
physics behind this branch will become clear when we
discuss Fig. 3 later. Figure 2 showing torsional oscillations
at different depths has to be compared with the observa-
tional Figs. 4–6 of Howe et al. [7]. A careful look shows a
small phase delay in the upper layers compared to the
lower layers. The observational plots become more inter-
mittent at the greater depths due to the more intermittent
nature of the magnetic field there. This is not reproduced in
the theoretical model based on mean field equations.
Figure 3 shows how torsional oscillations evolve in

depth and time at 2 different latitudes. The plot for latitude
20� compares very well with Fig. 4(D) of Vorontsov et al.
[5] or Fig. 7 of Howe et al. [7]. It is clear in the plot of 20�
that the Lorentz force is concentrated in the tachocline at
0:7R�, where the low-latitude torsional oscillations are
launched to propagate upward. The physics of the high-
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FIG. 1 (color online). Comparison between observation and
theory. The upper panel superposes the butterfly diagram of
sunspots on a time-latitude plot of the observed surface zonal
velocity v� (in ms�1) measured at Mount Wilson Observatory

(courtesy: Roger Ulrich). The comparable theoretical plot is
shown in the lower panel, in which the theoretical butterfly
diagram from our dynamo model is superposed on the time-
latitude plot of theoretically computed v� (in ms�1) at the

surface.
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latitude branch is, however, very different, with the Lorentz
force contours for latitude 70� indicating a downward
propagation and not a particularly strong concentration at
the tachocline. As the poloidal field sinks with the down-
ward meridional circulation at the high latitudes, the lat-
itudinal shear d�=d� in the convection zone acts on it to
create the toroidal component [21] and thereby the Lorentz
stress. With the downward advection of the poloidal field,
the region of Lorentz stress moves downward. In the case
of the low-latitude branch, the plot for latitude 20� shows
that the amplitude of the torsional oscillations becomes
larger near the surface due to the perturbations propagating
into regions of lower density, which is consistent with
observational data [5]. If the upward Alfvén propagation
is switched off, then the disturbances from the bottom of
the convection zone reach the top by diffusion (the diffu-
sion time being about 5 yr in our model), but the amplitude
of torsional oscillations in the upper layers of the convec-
tion zone generally falls to very low values.

Compared to the earlier theoretical models of torsional
oscillations, the two novel aspects of our model are (i) the
NC hypothesis, which allows the formation of a strong
toroidal field in the high-latitude tachocline before the
beginning of the sunspot cycle, and (ii) the assumption

that the perturbations propagate upward along flux tubes at
the Alfvén speed. With these two assumptions incorpo-
rated, our theoretical model readily explains most aspects
of torsional oscillations without requiring any changes in
the parameters of the original dynamo model [29]. Both of
these assumptions seem essential if we want to match
theory with observations in detail.
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FIG. 2. Theoretical torsional oscillations (v� in ms�1) in
time-latitude plots at different depths of the convection zone:
(a) 0:95R�, (b) 0:9R�, and (c) 0:8R�.

FIG. 3. Theoretical torsional oscillations (v� in ms�1) as
functions of depth and time at latitudes 20� (left) and 70� (right).
The contours indicate the Lorentz force ðFLÞ�; the solid and

dashed lines denote positive and negative values, respectively.
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