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We discuss how large three-body loss of atoms in an optical lattice can give rise to effective hard-core

three-body interactions. For bosons, in addition to the usual atomic superfluid, a dimer superfluid can then

be observed for attractive two-body interactions. The nonequilibrium dynamics of preparation and

stability of these phases are studied in 1D by combining time-dependent density matrix renormalization

group techniques with a quantum trajectories method.
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Cold atomic gases in optical lattices have proven a test
bed for understanding novel quantum phases [1] and non-
equilibrium many-body dynamics [2,3]. Recently, Syassen
et al. [4] showed that a strong two-body loss process for
molecules in an optical lattice [1] could produce an effec-
tive, elastic hard-core repulsion and thus a Tonks gas [4,5].
This is related to the quantum Zeno effect: a large loss
dynamically suppresses processes creating two-body occu-
pation on a particular site. Whilst elastic two-body inter-
actions occur in many systems, regimes where elastic
three-body interactions dominate are rare in nature. Here
we discuss how the ubiquitous, though normally undesir-
able three-body losses of atomic physics experiments can
induce effective three-body interactions. These are associ-
ated with interesting quantum phases, including Pfaffian
states [6], and could be used to stabilize three-component
Fermi mixtures [7], assisting in the production of a color
superfluid state [8]. We investigate Bosons in an optical
lattice, where a three-body hard-core constraint stabilizes
the system with attractive two-body interactions, and a
dimer superfluid phase emerges. We focus on the dynamics
of this intrinsically time-dependent system, both testing the
hard-core constraint for finite loss rates, and studying
nonequilibrium properties including decay. In one dimen-
sion, the exact evolution is computed by combining time-
dependent density matrix renormalization group methods
(t-DMRG) [2,3] with a quantum trajectories approach from
quantum optics [9].

Three-body recombination [10] in an optical lattice
corresponds to decay into the continuum of unbound states,
and thus loss from the lattice. This can be described by a
master equation in the Markov approximation [9], which
for atoms in the lowest band of an optical lattice can be
projected onto the corresponding basis of Wannier func-
tions [1,5], associated with bosonic annihilation operators
bi on site i. We can separate the master equation into terms
which conserve particle number, corresponding to an ef-
fective Hamiltonian Heff , and terms which remove three
particles on a site:

_� ðnÞ ¼ �iðHeff�
ðnÞ � �ðnÞHy
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where �ðnÞ denotes the system density operator with n

atoms and n̂i ¼ byi bi. The dominant loss term is on-site
three-body decay [11] and �3 is the corresponding rate.
The effective Hamiltonian is
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with J the nearest neighbor tunneling amplitude, U the
elastic two-body interaction, and "i the local potential. The
Hamiltonian is valid in the limit where J, "i, Un, � !
with ! the band gap and n the mean density. In an experi-
ment these parameters, in particularU, may be tuned while
�3 remains constant and large [12]. In Fig. 1(c) we show
example values of �3, U, and J using numbers for Cesium
as a function of lattice depth.
If we begin in a pure state with N particles, then loss

processes lead to heating, in that they produce a mixed
state of different particle numbers. Within a fixed particle
number sector, the dynamics are described by Heff . Three-
body interactions emerge most clearly in the limit of rapid
decay: �3 � J, U, �i. If we define the projector P onto the
subspace of states with at most two atoms per site andQ ¼
1� P, then in second order perturbation theory we obtain
the effective model

HP
eff � PHP� 2i

�3

PHQHP ¼ PHP� i
6J2

�3

P
X

j

cyj cjP;

(3)

where cj ¼ ðb2j=
ffiffiffi
2

p ÞPk2Nj
bk, and Nj denotes the set of

nearest neighbors of site j. The term PHP describes the
Hubbard dynamics, Eq. (2), supplemented by the hard-core
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constraint ðbyi Þ3 ¼ 0. Furthermore, the effective loss rates
decrease as J2=�3 [13].

Thus, we see the clear emergence of a three-body hard-
core constraint in the limit �3=J � 1. We can study the
physics of the projected model PHP to obtain a qualitative
understanding of the quantum phases associated with the
projection. However, the residual loss processes make this
system intrinsically time dependent, and can give rise to
heating. We therefore study the full nonequilibrium dy-
namics, by combining t-DMRG methods [2,3] with an
expression of the master equation as an average over
quantum trajectories [9]. Each stochastic trajectory begins
from an initial pure state (sampled from the initial density
matrix), and can be interpreted as describing a single
experimental run, in which losses occurred at particular
times tn and on sites in. The evolution is described by the
non-Hermitian Heff , except for times tn, where losses (or
quantum jumps) occur,

i@
d

dt
jc ðtÞi ¼ Heffjc ðtÞi; jc ðtþn Þi ¼

Cin jc ðtnÞi
jjCin jc ðtnÞijj ;

(4)

where the jump operator Ci ¼ b3i corresponds to three-
body loss on site i. In stochastic simulation of the master
equation, the times tn are points where the norm of the state
falls below a randomly chosen threshold. At these times, a
random jump operator is selected according to the proba-

bilities pin / hc ðtnÞjCy
i Cijc ðtnÞi and applied. In this way

we can both investigate individual trajectories and compute

expectation values from the master equation. The latter is
performed by stochastic average over both initial states and
over jump events, which converges rapidly as the number
of trajectories is increased.
The need to simulate many trajectories for convergence

is offset by the efficiency of simulating states rather than
density matrices [14], and we can also make use of existing
optimizations for conserved quantities. Despite the appli-
cation of local jump operators, we find the evolution quite
efficient, especially for small numbers of jumps [15].
As an example of the suppression of loss, we consider

preparing a homogenous initial state at unit filling in a deep
optical lattice whereU=J ! 1. At time t ¼ 0we suddenly
ramp the lattice to a finite depth, and observe the proba-
bility p that a single three-body loss event has occurred as a
function of time. In Fig. 1(c) we plot this probability for
different U=J as a function of �3=J. We see a clear
suppression of loss rates for large �3=J, and also a sub-
stantial decrease for larger U=J, resulting from the de-
creased amplitude for doubly occupied sites.
In the limit of large �3, it is instructive to study the

equilibrium phase diagram of the projected Hamiltonian
PHP. For U=J > 0, we observe the well-known Mott
insulator (MI) and atomic superfluid phases of the Bose-
Hubbard model. However, the three-body hard-core con-
dition will also stabilize the system forU=J < 0, where we
find a dimer superfluid phase [see Fig. 2(a)]. This is char-
acterized by the vanishing of the order parameter signalling
superfluidity of single atoms (ASF) (hbii ¼ 0), while a

FIG. 2 (color online). Equilibrium analysis of the projected
Bose-Hubbard model PHP. (a) Mean-field phase diagram as a
function of U=ðJzÞ and density, n. (b,c) Magnitude of off-
diagonal elements of (b) the single particle density matrix
jSði; jÞj ¼ jhbyi bjij and (c) the dimer density matrix, jDði; jÞj ¼
jhbyi byi bjbjij, as a function of ji� jj, for U=J ¼ 10 (thin solid

line), 5 (dotted), 0 (dot-dash),�5 (dashed), and�10 (thick solid
line). These results are computed for 20 particles on 20 lattice
sites in one dimension, with box boundary conditions and iþ
j ¼ 21, using imaginary time evolution in t-DMRG, and plotted
on a logarithmic scale.

FIG. 1 (color online). (a) Bosons in an optical lattice in the
presence of three-body loss at a rate �3. (b) Example model
parameters estimated for Cs at a magnetic field of 15 Gauss
(where the scattering length is 20a0 and the recombination
length �500a0 [10] where a0 is the Bohr radius) as a function
of lattice depth V0, showing �3 (solid line), U (dashed), and J
(dotted). Values of �3 are obtained by integrating the measured
three-body recombination rates in free space over a state with
three particles in a single Wannier function. (c) The probability
that at least one loss event has occurred at time tJ ¼ 2, begin-
ning with a single particle on each of 10 sites, and U=J ¼ 3
(solid line), 5 (dashed), and 10 (dotted), computed using
t-DMRG methods (see text for details).
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dimer superfluidity (DSF) order parameter persists (hb2i i �
0). The superfluid regimes are connected via a quantum
phase transition associated with the spontaneous breaking
of a discrete Z2 symmetry, reminiscent of an Ising transi-
tion [16]: the DSF order parameter transforms with the
double phase � exp2i� compared to the ASF order pa-
rameter � expi�. Consequently, the symmetry � ! �þ �
exhibited by the DSF order parameter is broken when
reaching the ASF phase.

We can obtain a qualitative mean-field picture using a
homogeneous Gutzwiller ansatz wavefunction, given for
the projected Hilbert space by j�i ¼ Q

ij�ii, where
j�ii¼ r0e

i�0 j0iiþr1e
i�1 j1iiþr2e

i�2 j2ii. Normalization
implies

P
�r

2
� ¼ 1, while the filling is n ¼ r21 þ 2r22 � 2.

To examine the phases, we find the energy E=Md ¼
h�jHj�i, Eðr�;��Þ¼Ur22�Jzr21½r20þ2

ffiffiffi
2

p
r2r0 cos�þ

2r22�, where � ¼ �2 þ�0 � 2�1 and Md is the number

of lattice sites. For any r� the energy is minimized for� an
integer multiple of 2�. For r1, r0 � 0 placing us in the ASF

phase with jhbiij2 ¼ r21ðr0 þ
ffiffiffi
2

p
r2Þ2 � 0, the phase-

locking expression contributes a ‘‘source’’ term linear in
r2 to the energy, and consequently the minimum of the
energy cannot be located at r2 ¼ 0. Thus, a finite atomic
condensate always implies a dimer component jhb2i ij2 ¼
2ðr0r2Þ2, though the reverse is not true.

At fixed n, the energy is a function, e.g., of r1 alone. For
the second order transition found within our mean-field
theory, an instability for atomic superfluidity is indicated
by its mass term crossing zero, @2Eðr1 ¼ 0Þ=@r21 � 0. This
leads to a critical interaction strength for the ASF-DSF

transition, Uc=ðJzÞ ¼ �2½1þ n=2þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� n=2Þp �.

Within the DSF phase the order parameter obeys jhb2i ij2 ¼
nð1� n=2Þ independent of the interaction strength. For
n ! 2, we approach a MI state in a second order transition.
At n ¼ 1 we find that the ASF-DSF transition takes place
at the same coupling strength as the ASF-MI transition, but
with the opposite sign. The complete mean-field phase
diagram in the plane of density and interaction strength
is plotted in Fig. 2(a).

From the last term in Eq. (3), we can estimate the initial
loss rate from the ground state Gutzwiller wave function.
We obtain the rate �eff ¼ 3J2z=�3M

dðhn̂2i i � nÞ	
ðnþ jhbiij2Þ, which is zero in the MI, and / n2 for the
DSF, �eff ¼ 3J2zMdn2=�3. In the DSF phase, the critical

temperature Tc/n2=3 at low densities, and the energy
density deposited by a single loss, �Eloss ¼ ðzþ
1ÞjUjn=ð2MdÞ. The number of independent loss events
needed to melt the DSF is then proportional to
Tc=�Eloss, and the melting time strongly decreases for

increasing density, proportional to �3=½jUjðzþ 1ÞJ2zn7=3�.
These qualitative features are reproduced in one dimen-

sion, as supported by numerical calculation of the ground
state for PHP. In Figs. 2(b) and 2(c) we show the charac-
terisation of the crossover between the ASF and DSF
regimes in one dimension via the off-diagonal elements

of the single particle density matrix, Sði; jÞ ¼ hbyi bji, and

the dimer density matrix Dði; jÞ ¼ hbyi byi bjbji. In the MI

regime, the off-diagonal elements of Sði; jÞ and Dði; jÞ
decay exponentially. As we enter the superfluid regime,
quasi-long-range order is visible in the polynomial decay
(linear on the logarithmic scale). As U=J is made more
negative, we see a return to exponential decay for the off-
diagonal elements of Sði; jÞ, but the off-diagonal elements
of Dði; jÞ still decay polynomially and, indeed, increase in
magnitude. This characterizes the DSF regime in one
dimension. Here, the transition to the DSF and MI regimes
occurs at much smaller jU=Jj than in higher dimensions,
but these two transitions again occur at similar jU=Jj for
n ¼ 1.
A DSF could be prepared via an adiabatic ramp begin-

ning from states with very small amplitude of three-body
occupation. We study two such scenarios as illustrated in
Fig. 3(a): (i) Beginning from a MI, and ramping from
U=J ¼ 30 to U=J ¼ �8 to produce a DSF (which is
intuitive, but associated with large probability of decay);
or (ii) applying a superlattice and beginning from a MI
with two particles per site in the lowest wells, then switch-
ing the interaction rapidly to U=J ¼ �8 on a time scale
much faster than tunneling between the lowest wells and
ramping down the superlattice. In each case, we compute
dynamics for �3=J ¼ 250, ramping parameters sufficiently

FIG. 3 (color online). Dynamics of adiabatic ramps into a
dimer superfluid regime. (a) We begin with (i) a Mott-insulator
state (ramping U=J), and (ii) a state with preprepared dimers in a
superlattice (removing the superlattice). (b)-(c) The sum of
kinetic (EK) and interaction (EI) energy and (inset) particle
number as a function of time for two example trajectories, one
with no loss events (dashed lines) and one with several loss
events (solid lines). Here, (b) shows a ramp from U=J ¼ 30 to
U=J ¼ �8, with UðtÞ ¼ �J=ð100þ 3tJÞ þ �, with � and �
ramp parameters, and (c) shows a ramp with a superlattice
potential, "l ¼ V0 cosð2�l=3Þ, where V0 � 30J expð�0:1tJÞ,
adjusted so that V0ðtJ ¼ 100Þ ¼ 0, with fixed U=J ¼ �8. In
each case, �3 ¼ 250J. For (b), we use 20 atoms on 20 lattice
sites, for (c), 14 atoms on 23 lattice sites. (d) Plot showing the
probability that no loss event has occurred after time t for the
ramps in (b) (dashed line) and (c) (solid).
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slowly that without loss, the ground state will be reached
with minimal presence of excited states.

In Figs. 3(b) and 3(c) we show the time dependence of
the sum of kinetic and interaction energies, and of the total
particle number, for example, trajectories. For each ramp
type, we choose a ‘‘lossless’’ trajectory, where the ground
state is reached adiabatically, and a ‘‘lossy’’ trajectory,
where three-body loss events lead to heating of the system
(as holes are produced that correspond to excited states).

In Fig. 3(d), we compare the probability for each type of
ramp of producing the lossless trajectory. We see that for
the ramp from the MI state, where we pass through a region
of small U=J, the probability of such a trajectory is essen-
tially zero. For the superlattice ramp, on the other hand, it
is much more likely that we will obtain the ground state
from a randomly chosen trajectory. This is because the
superlattice both allows us to use large jU=Jj, and facili-
tates the choice of a lower density.

In Fig. 4 we show the local density as a function of time
and the final dimer density matrixDði; jÞ for (a) the lossless
and (b) the lossy trajectories of Fig. 3(c). When a loss
occurs it affects not just the density for the site on which it
occurs, but also on neighboring sites due to the knowledge
that we obtain of the position of the remaining particles.
We also see clearly the destruction of correlations in the
region of the system where the loss occurs. Note, however,
that a single loss event does not always destroy the prop-
erties of the final state, and while the probability of an
individual loss event increases with system size, a single
loss event will change the character of the final state less.

The three-body interactions discussed here could have
applications to producing Pfaffian-like states and stabiliz-
ing three-component mixtures. The theoretical approach
we have used, quantum trajectories combined with
t-DMRG, could also be applied to other classes of master

equations. Open questions regarding the nature of the ASF-
DSF phase transition will be addressed within a quantum
field theoretical treatment [17].
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