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Franson’s Bell experiment with energy-time entanglement [Phys. Rev. Lett. 62, 2205 (1989)] does not

rule out all local hidden variable models. This defect can be exploited to compromise the security of Bell

inequality-based quantum cryptography. We introduce a novel Bell experiment using genuine energy-time

entanglement, based on a novel interferometer, which rules out all local hidden variable models. The

scheme is feasible with actual technology.
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Two particles exhibit ‘‘energy-time entanglement’’
when they are emitted at the same time in an energy-
conserving process and the essential uncertainty in the
time of emission makes undistinguishable two alternative
paths that the particles can take. Franson [1] proposed an
experiment to demonstrate the violation of local realism
[2] using energy-time entanglement, based on a formal
violation of the Bell Clauser-Horne-Shimony-Holt
(CHSH) inequality [3]. However, Aerts et al. [4] showed
that, even in the ideal case of perfect preparation and
perfect detection efficiency, there is a local hidden variable
(LHV) model that simulates the results predicted by quan-
tum mechanics for the experiment proposed by Franson
[1]. This model proves that ‘‘the Franson experiment does
not and cannot violate local realism’’ and that ‘‘[t]he
reported violations of local realism from Franson experi-
ments [5] have to be reexamined’’ [4].

Despite this fundamental deficiency, and despite that this
defect can be exploited to create a Trojan horse attack in
Bell inequality-based quantum cryptography [6], Franson-
type experiments have been extensively used for Bell tests
and Bell inequality-based quantum cryptography [7], have
become standard in quantum optics [8,9], and an extended
belief is that ‘‘the results of experiments with the Franson
experiment violate Bell’s inequalities’’ [9]. This is particu-
larly surprising, given that recent research has emphasized
the fundamental role of a (loophole-free) violation of the
Bell inequalities in proving the device-independent secur-
ity of key distribution protocols [10], and in detecting
entanglement [11].

Polarization entanglement can be transformed into
energy-time entanglement [12]. However, to our knowl-
edge, there is no single experiment showing a violation
of the Bell-CHSH inequality using genuine energy-time
entanglement (or ‘‘time-bin entanglement’’ [13]) that can-
not be simulated by a LHV model. By ‘‘genuine’’ we mean
not obtained by transforming a previous form of en-
tanglement, but created because the essential uncertainty

in the time of emission makes two alternative paths
undistinguishable.
Because of the above reasons, a single experiment using

energy-time entanglement able to rule out all possible
LHV models is of particular interest. The aim of this
Letter is to describe such an experiment by means of a
novel interferometric scheme. The main purpose of the
new scheme is not to compete with existing interferometers
used for quantum communication in terms of practical
usability, but to fix a fundamental defect common to all
of them.
We will first describe the Franson Bell-CHSH experi-

ment. Then, we will introduce a LHV model reproducing
any conceivable violation of the Bell-CHSH inequality.
The model underlines why a Franson-type experiment
does not and cannot be used to violate local realism.
Then, we will introduce a new two-photon energy-time
Bell-CHSH experiment that avoids these problems and can
be used for a conclusive Bell test.
The Franson Bell-CHSH experiment.—The setup of a

Franson Bell-CHSH experiment is in Fig. 1. The source
emits two photons, photon 1 to the left and photon 2 to the
right. Each of them is fed into an unbalanced interferome-
ter.BSi are beam splitters andMi are perfect mirrors. There
are two distant observers, Alice on the left and Bob on the
right. Alice randomly chooses the phase of the phase
shifter �A between A0 and A1, and records the counts in
each of her detectors (labeled a ¼ þ1 and a ¼ �1), the
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FIG. 1 (color online). Generic setup of the Franson Bell ex-
periment.
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detection times, and the phase settings at tD � tI, where tD
is the detection time and tI is the time the photon takes to
reach the detector from the location of the phase shifter�A.
Similarly, Bob chooses�B between B0 and B1, and records
the counts in each of his detectors (labeled b ¼ þ1 and
b ¼ �1), the detection times, and the phase settings. The
setup must satisfy four requirements: (I) To have two-
photon interference, the emission of the two photons
must be simultaneous, the moment of emission unpredict-
able, and both interferometers identical. If the detections of
the two photons are coincident, there is no information
about whether both photons took the short paths S or both
took the long paths L. A simultaneous random emission is
achieved in actual experiments by two methods, both based
on spontaneous parametric down conversion. In energy-
time experiments, a nonlinear crystal is pumped continu-
ously by a monochromatic laser so the moment of emission
is unpredictable in a temporal window equal to the coher-
ence time of the pump laser. In time-bin experiments, a
nonlinear crystal is pumped by pulses previously passing
through an unbalanced interferometer, so it is the uncer-
tainty of which pulse, the earlier or the later, has caused the
emission what provokes the uncertainty in the emission
time. In both cases, the simultaneity of the emission is
guaranteed by the conservation of energy. (II) To prevent
single-photon interference, the difference between paths L
and S, i.e., twice the distance between BS1 andM1,�L ¼
2dðBS1;M1Þ (See Fig. 1), must satisfy �L> ctcoh, where
c is the speed of light and tcoh is the coherence time of the
photons. (III) To make distinguishable those events where
one photon takes S and the other takes L, �L must satisfy
�L> c�tcoinc, where �tcoinc is the duration of the coin-
cidence window. (IV) To prevent that the local phase
setting at one side can affect the outcome at the other
side, the local phase settings must randomly switch (�A

between A0 and A1, and �B between B0 and B1) with a
frequency of the order c=D, where D ¼ dðSource; BS1Þ.

The observers record all their data locally and then
compare them. If the detectors are perfect they find that

PðAi ¼ þ1Þ ¼ PðAi ¼ �1Þ ¼ 1
2; (1a)

PðBj ¼ þ1Þ ¼ PðBj ¼ �1Þ ¼ 1
2; (1b)

for i, j 2 f0; 1g. PðA0 ¼ þ1Þ is the probability of detecting
a photon in the detector a ¼ þ1 if the setting of �A was
A0. They also find 25% of two-photon events in which
photon 1 is detected a time �L=c before photon 2, and
25% of events in which photon 1 is detected �L=c after
photon 2. The observers reject this 50% of events and keep
the 50% that are coincident. For these selected events,
quantum mechanics predicts that

PðAi ¼ a; Bj ¼ bÞ ¼ 1
4½1þ ab cosð�Ai

þ�Bj
Þ�; (2)

where a; b 2 f�1;þ1g and �Ai
(�Bj

) is the phase setting

corresponding to Ai (Bj).

The Bell-CHSH inequality is

� 2 � �CHSH � 2; (3)

where

�CHSH ¼ hA0B0i þ hA0B1i þ hA1B0i � hA1B1i: (4)

According to quantum mechanics, the maximal violation

of the Bell-CHSH inequality is �CHSH ¼ 2
ffiffiffi

2
p

[14], and
is obtained, e.g., with �A0

¼ 0, �A1
¼ �

2 , �B0
¼ � �

4 ,

�B1
¼ �

4 .

LHV models for the Franson experiment.—A LHV the-
ory for the Franson experiment must describe how each of
the photons makes two decisions. The þ1=� 1 decision:
the decision of a detection to occur at detector þ1 or at
detector �1, and the S=L decision: the decision of a

detection to occur at time tD ¼ t or a time tD ¼ tþ �L
c .

Both decisions may be made as late as the detection time
tD, and may be based on events in the backward light cones
of the detections. In a Franson-type setup both decisions
may be based on the corresponding local phase setting at
tD � tI. For a conclusive Bell test, there is no problem if
photons make the þ1=� 1 decision based on the local
phase setting. The problem is that the 50% postselection
procedure should be independent on the phase settings,
otherwise the Bell-CHSH inequality (3) is not valid. In the
Franson experiment the phase setting at tD � tI can caus-
ally affect the decision of a detection of the corresponding

photon to occur at time tD ¼ t or a time tD ¼ tþ �L
c . If

the S=L decision can depend on the phase settings, then,
after the 50% postselection procedure, one can formally
obtain not only the violations predicted by quantum me-
chanics, as proven in [4], but any value of �CHSH, even
those forbidden by quantum mechanics. This is proven by
constructing a family of explicit LHV models.
Consider the 64 sets of local instructions in Tables I and

II. For instance, if the pair of photons follows the first set of

TABLE I. 32 sets of instructions (out of 64) of the LHV model
(the other 32 are in Table II). Each row represents 4 sets of local
instructions (first 4 entries) and their corresponding contributions
for the calculation of �CHSH after applying the postselection
procedure of the Franson experiment (last 4 entries). For each
row, two sets (corresponding to � signs) are explicitly written,
while the other two can be obtained by changing all signs.

A0 A1 B0 B1 hA0B0i hA0B1i hA1B0i hA1B1i
Sþ Sþ Sþ L� þ1 rejected þ1 rejected

Lþ Lþ Lþ S� þ1 rejected þ1 rejected

Sþ S� L� Sþ rejected þ1 rejected �1
Lþ L� S� Lþ rejected þ1 rejected �1
Sþ L� Sþ Sþ þ1 þ1 rejected rejected

Lþ S� Lþ Lþ þ1 þ1 rejected rejected

L� Sþ Sþ S� rejected rejected þ1 �1
S� Lþ Lþ L� rejected rejected þ1 �1
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local instructions in Table I, ðA0 ¼ÞSþ , ðA1 ¼ÞSþ ,
ðB0 ¼ÞS� , ðB1 ¼ÞLþ , then, if the setting of �A is A0

or A1, photon 1 will be detected by the detector a ¼ þ1 at
time t (corresponding to the path S), and if the setting of
�B is B0, photon 2 will be detected by b ¼ �1 at time t,
but if the setting of �B is B1, photon 2 will be detected by

b ¼ þ1 at time tþ �L
c (corresponding to the path L). If

each of the 32 sets of instructions in Table I occurs with
probability p=32, and each of the 32 sets of instructions in
Table II with probability ð1� pÞ=32, then it is easy to see
that, for any value of 0 � p � 1, the model gives 25% of
SL events, 25% of LS events, 50% of SS or LL events, and
satisfies (1a) and (1b). If p ¼ 0, the model gives �CHSH ¼
�4. If p ¼ 1, the model gives �CHSH ¼ 4. If 0< p< 1,
the model gives any value between �4<�CHSH < 4.

Specifically, a maximal quantum violation �CHSH ¼ 2
ffiffiffi

2
p

,

satisfying (2), is obtained when p ¼ ð2þ ffiffiffi

2
p Þ=4.

The reason why this LHV model is possible is that the
50% postselection procedure in Franson’s experiment al-
lows the subensemble of selected events to depend on the
phase settings. For instance, the first 8 sets of instructions
in Table I are rejected only when �B ¼ B1. The main aim
of this Letter is to introduce a similar experiment which
does not have this problem.

There is a previously proposed solution consisting on
replacing the beam splitters BS1 and BS2 in Fig. 1 by
switchers synchronized with the source [13]. However,
these active switchers are replaced in actual experiments
by passive beam splitters [7,13] that force a Franson-type
postselection with the same problem described above.

One way to avoid the problem is to make an extra
assumption, namely, that the decision of being detected

at time tD ¼ t or a time tD ¼ tþ �L
c is actually made at the

first beam splitter, before having information of the local
phase settings [4,15]. This assumption is similar to the fair
sampling assumption, namely, that the probability of re-
jection does not depend on the measurement settings. As
we have seen, there are local models that do not satisfy this
assumption. The experiment we propose does not require
this extra assumption.

Proposed energy-time entanglement Bell experiment.—
The setup of the new Bell experiment is illustrated in
Fig. 2. The source emits two photons, photon 1 to the left

and photon 2 to the right. The S path of photon 1 (photon 2)
ends on the detectors a on the left (b on the right). The
difference with Fig. 1 is that now the L path of photon 1
(photon 2) ends on the detectors b (a). In this setup, the two
photons end in different sides only when both are detected
in coincidence. If one photon takes S and the other photon
takes L, both will end on detectors of the same side. An
interferometer with this last property is described in [16].
The data that the observers must record are the same as

in Franson’s experiment. The setup must satisfy the fol-
lowing requirements: (I0) To have two-photon interference,
the emission of the two photons must be simultaneous, the
moment of emission unpredictable, and both arms of the
setup identical. The phase stabilization of the entire setup
of Fig. 2 is more difficult than in Franson’s experiment.
(II0) Single-photon interference is not possible in the setup
of Fig. 2. (III0) To temporally distinguish two photons

arriving at the same detector at times t and tþ �L0
c , where

�L0 ¼ 2½dðSource; BS2Þ þ dðBS2;M1Þ� (see Fig. 2), the

dead time of the detectors must be smaller than �L0
c . For

detectors with a dead time of 1 ns,�L0 > 30 cm. (IV0) The
probability of two two-photon events in �L0

c must be neg-

ligible. This naturally occurs when using standard non-
linear crystals pumped continuously. (V0) To prevent that
the local phase setting at one side can affect the outcome at
the other side, the local phase settings must randomly
switch (�A between A0 and A1, and �B between B0 and
B1) with a frequency of the order c=D0, where D0 ¼
dðSource; �AÞ � �L0.
There is a trade-off between the phase stabilization of

the apparatus (which requires a short interferometer) and
the prevention of reciprocal influences between the two
local phase settings (which requires a long interferometer).
By considering a random phase modulation frequency of
300 kHz, an interferometer about 1 km long would be
needed. Current technology allows us to stabilize interfer-
ometers of up 4 km long (for instance, one of the interfer-
ometers of the LIGO experiment is 4 km long). With these
stable interferometers, the experiment would be feasible.
The predictions of quantum mechanics for the setup of

Fig. 2 are similar to those in Franson’s proposal: Eqs. (1a)
and (1b) hold, there is 25% of events in which both photons

are detected on the left at times t and tþ �L0
c , 25% of

events in which both photons are detected on the right, and
50% of coincident events for which (2) holds. The observ-
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FIG. 2 (color online). The generic setup of the proposed
energy-time (and time-bin) Bell experiment.

TABLE II. 32 sets of instructions of the LHV model.

A0 A1 B0 B1 hA0B0i hA0B1i hA1B0i hA1B1i
Sþ Sþ S� L� �1 rejected �1 rejected

Lþ Lþ L� S� �1 rejected �1 rejected

Sþ S� L� S� rejected �1 rejected þ1
Lþ L� S� L� rejected �1 rejected þ1
S� L� Sþ Sþ �1 �1 rejected rejected

L� S� Lþ Lþ �1 �1 rejected rejected

L� S� Sþ S� rejected rejected �1 þ1
S� L� Lþ L� rejected rejected �1 þ1
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ers must keep the coincident events and reject those giving
two detections on detectors of the same side. The main
advantages of this setup are: (i) The rejection of events is
local and does not require communication between the
observers. (ii) The selection and rejection of events is
independent of the local phase settings. This is the crucial
difference with Franson’s experiment and deserves a de-
tailed examination. First consider a selected event: both
photons have been detected at time tD, one in a detector a
on the left, and the other in a detector b on the right. tI is the
time a photon takes from �A (�B) to a detector a (b). The
phase setting of�A (�B) at tD � tI is in the backward light
cone of the photon detected in a (b), but the point is, could
a different value of one or both of the phase settings have
caused that this selected event would become a rejected
event in which both photons are detected on the same side?
The answer is no. This would require a mechanism to make
one detection to ‘‘wait’’ until the information about the
setting in other side comes. However, when this informa-
tion has finally arrived, the phase settings (both of them)
have changed, so this information is useless to base a
decision on it.

Now consider a rejected event. For instance, one in
which both photons are detected in the detectors a on the

left, one at time tD ¼ t, and the other at tD ¼ tþ �L0
c .

Then, the phase settings of �B at times tD � tI are out of
the backward light cones of the detected photons. The
photons cannot have based their decisions on the phase
settings of �B. A different value of �A cannot have caused
that this rejected event would become a selected event.
This would require a mechanism to make one detection to
wait until the information about the setting arrives to the
other side, and when this information has arrived, the phase
setting of �A has changed so this information is useless.

For the proposed setup, there is no physical mechanism
preserving locality which can turn a selected (rejected)
event into a rejected (selected) event. The selected events
are independent of the local phase settings. For the selected
events, only theþ1=� 1 decision can depend on the phase
settings. This is exactly the assumption under which the
Bell-CHSH inequality (3) is valid. Therefore, an experi-
mental violation of (3) using the setup of Fig. 2 and the
postselection procedure described before provides a con-
clusive (assuming perfect detectors) test of local realism
using energy-time (or time-bin) entanglement. Indeed, the
proposed setup opens up the possibility of using genuine

energy-time or time-bin entanglement for many other
quantum information experiments.
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