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The free energies of the austenite, the (modulated) premartensite and the unmodulated martensite of

Ni2MnGa are determined using density functional theory and including quasiharmonic phonons and

fixed-spin-moment magnons. This approach very well reproduces the complete phase sequence

(martensite $ premartensite $ austenite) of stoichiometric Ni2MnGa as a function of temperature. By

analyzing the relevant free energy contributions, we also understand the delicate interplay of phonons and

magnons driving both phase transitions.
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The Heusler alloy Ni2MnGa belongs to a class of mate-
rials showing the magnetic shape memory (MSM) effect.
In contrast to conventional shape memory alloys, where the
change in shape is controlled solely by temperature, MSM
alloys allow a control also by magnetic fields thus enabling
switching frequencies in the kHz regime. The MSM effect
is directly related to a martensitic phase transition. The
high temperature (austenitic) phase is cubic, whereas in the
low temperature (martensitic) phase the crystal symmetry
is reduced by a tetragonal distortion and, consequently,
the shape of the material changes. Near-stoichiometric
Ni2MnGa additionally shows a (modulated, but still cubic)
premartensitic phase in between the austenite and the
martensite. It has a tweed structure of 3M nature and is
stable between the martensitic (TM � 200 K) and the pre-
martensitic transition temperature (TPM ¼ 247 K [1], re-
spectively, 260 K [2]). For practical applications, TM has to
be well above room temperature, which can be achieved by
changing the stoichiometry [3].

A thorough understanding of the physical mechanisms
driving the phase transitions is required to perform a more
systematic search for improved alloys. Recently, ultravio-
let photoelectron spectroscopy (UPS) measurements of the
changes in the electronic structure were reported going
from the austenite to the martensite [1]. These confirm
the formation of a pseudogap a little below the Fermi level
as earlier determined from first principles [4,5]. The pseu-
dogap forms the electronic basis of the stabilization of the
martensite and the premartensite at lower temperatures.
The pseudogap is formed by a reconstruction of minority
spin Ni-d states around the Fermi level and this is under-
stood from a combination of Fermi surface nesting [5] and
a band Jahn-Teller effect [6–8]. Lee et al. [9] investigated
the Fermi surface nesting in the austenite as a function of
magnetization using the Stoner approximation. They found
a pronounced peak in the generalized susceptibility of the
majority spin channel at a wave vector of q ¼ X2=3 for

the experimental magnetic moment at the premartensite
transition temperature, confirming the 3M nature of the
premartensite.
To understand the phase transitions, however, the ther-

modynamic stabilization of the austenite and premartensite
needs to be quantitatively determined. In this Letter, we,
therefore, explicitly compute the relevant entropic contri-
butions separately from first principles. This allows us to
quantify and explain the mechanisms driving the phase
transitions. A first attempt in this direction was undertaken
by Enkovaara et al. [10] who treated the vibrational effects
within the Debye approximation and obtained a realistic
prediction for the transition temperature between the mar-
tensite and austenite phase (TM � 175 K). To keep the
numerical effort tractable, the study, however, did not
take into account the intermediate modulated premarten-
site phases as well as the influences of the temperature
dependent magnetization on structural stability [11].
Within this Letter, we overcome both shortcomings and

find a very good agreement of the respective transition
temperatures. An analysis of the different contributions
demonstrates that finite temperature magnetic effects are
necessary to explain the premartensite transition, whereas
the martensite transition is driven by combined vibrational
and magnetic excitations.
The present study employs density functional theory

(DFT) within the generalized gradient approximation
[12]. We use the Vienna ab initio simulation package
(VASP) [13] with the projector augmented wave method
[14] to calculate the total energies and the forces.
Nonlinear core corrections are applied for all atoms and
the Ga-3d electrons are treated as valence states; an energy
cutoff of 350 eVand a k-point grid of 4� 10� 8 are used
in the 3� 1� 1 tetragonal cell (24 atoms) with real grid

spacings of� 0:08 �A. A modified tetrahedron method [15]
was used for the k-point integration in the total energy
calculations and the Methfessel-Paxton scheme [16] with a
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width of 0.3 eV for the force calculations. This combina-
tion of k points and smearing width proved to yield con-
verged values for phonons that are relevant for the free
energy. The ab initio force constants are calculated using a

direct approach with displacements of � 0:1 �A. These
were tested to be still within the harmonic regime.

The phonon frequencies and resulting thermodynamics
are obtained from the ab initio force constants using the
cþþ library S/PHI/NX [17]. The vibrational contributions
are determined within the quasiharmonic approximation
[18]: the experimental phase transition occurs at constant
pressure, i.e., at the equilibrium volume (Veq) for that

temperature. This volume is self-consistently determined
at each temperature by calculating the phonons at various
volumes and minimizing the resulting free energy.
Previous studies on a large set of fcc metals showed
excellent agreement with experimental data [19].

The magnetic contributions to the free energy can be
modeled by constraining the total moment per cell by
means of the fixed-spin-moment approach [20]. Although
this approach is not expected to reflect all the subtleties
related to, e.g., the locality of the moments and the energy
spectrum of the spirals at the zone boundaries [21], it
captures the essential physics of the current phase transi-
tions. These take place well below the Curie temperature,
i.e., at temperatures where fluctuations in the ferromag-
netic nature of the phases are less important. Furthermore,
the temperature induced changes in the magnetic structure
affect mainly the Ni atoms since (i) the Ni-d states domi-
nate the density of states at the Fermi level [4,5] and (ii) the
Ni atoms in the L21 phase do not exhibit stable localized
moments on their own, but rather follow the net field of the
surrounding Mn moments [21]. The temperature depen-
dence of the magnetization (�T) is described using the
Kuz’min formula [22] with the experimental Curie tem-
perature TC ¼ 376 K [23] and the parameters s ¼ 0:1 and
p ¼ 2:8. The magnetic contribution to the free energy is
then obtained up to first order in �T :

Fð�T; TÞ ¼ Fð�0; TÞ þ ð�T ��0Þ

� Fð�ref ; TÞ � Fð�0; TÞ
�ref ��0

:

Here, �0 ¼ �T¼0 K and �ref is a reference magnetic mo-
ment for which we took �ref ¼ �T�270 K ¼ 5�0=6. The
premartensite–austenite energy difference as a function of
�T confirms that the linear description is well suited.
Moreover, the temperature to which the reference magnetic
moment corresponds is comparable to the premartensitic
transition temperature [2] and so higher order contributions
are minimized.

The described approach is carried out for each of the
three relevant phases (austenite, premartensite, martens-
ite). This involves full phonon spectra for each phase,
multiple volumes and two magnetizations, all requiring a
minimum of 9 or 18 supercell calculations (depending on

symmetry). The total energies combined with the vibra-
tional and magnetic contributions yield the free energy at
each temperature.
In a first step, we determine the equilibrium structures of

the austenite and the martensite of Ni2MnGa by consider-
ing all orthorhombic distortions of the cubic L21 Heusler
structure. The cubic phase of the austenite turns out to be a
shallow minimum of this energy surface [24] and a tetrago-
nal distortion with c=a ¼ 1:25 yields the stable phase at
T ¼ 0 K in agreement with Ref. [4], which refined the
original work on this phase [7,8]. This is the martensite
phase as seen by neutron powder diffraction on slightly off-
stoichiometric Ni2MnGa in Ref. [25] and it is the stable
phase upon cooling below 128 K in slightly off-
stoichiometric Ni2MnGa according to Ref. [5]. This phase
is also used in previous DFT studies [1,10]. The premar-
tensite structure (depicted in Fig. 1) is obtained from a soft
phonon analysis [24] of the austenite imaginary frequency
at q ¼ X2=3 (see below). The resulting modulated struc-
ture consists of coherent shifts of (110) planes in the ½1�10�
direction with amplitudes of 0.170, 0.150, and 0.153 Å (for
the Ni, Mn, and Ga atoms, respectively).
For the phonons, a very good agreement is obtained with

the DFT calculations of Bungaro et al. [26] and experiment
for the austenite [2]. For the TA2 branch along the [110]
direction (see Fig. 2), experiment finds a phonon softening,
whereas the DFT calculations consistently yield imaginary
phonon frequencies (cf. Ref. [27]). These indicate a lattice
instability: the structure can gain energy by moving the
atoms along an eigenvector belonging to the imaginary
phonons. This lowers the symmetry and results in the
modulated structure of the (cubic) premartensite as dis-
cussed above. The premartensite phonon spectrum, con-
sequently, shows a sixfold replication relative to the
austenite [28] and no imaginary frequencies. No phonons
have yet been reported for this structure. The martensite
phonon spectrum shows no soft modes either and is in good

FIG. 1 (color online). Supercell with atomic positions for the
3M premartensite phase as seen from the [001] direction. The
cell contains 6 equivalent, but shifted layers along [110]. The
corresponding atomic displacements in the ½1�10� direction (see
arrows) follow a sine wave, which is enlarged for better visibil-
ity. a is the lattice vector of the austenite tetragonal unit cell
(dark area).
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agreement with previous ab initio data [27]. Figure 2 com-
pares the [110] spectra for all three phases.

The free energies are obtained from the full phonon
spectra using the partition function [19]. This procedure
is straightforward for cases where all phonon frequen-
cies are real, i.e., the martensite and premartensite. An
established approach to treat the imaginary frequencies
of the austenite [29] is to drop these when integrating
over the Brillouin zone, making use of the fact that only
a small volume is affected. In fact, manually making all
the frequencies real lowers the free energy by only

0:12 meV=atom at 500 K. Figure 3 shows the free energies
FðVeq; �0; TÞ for all three phases, containing the (quasi-

harmonic) vibrational, but no magnetic excitations. These
free energies yield only one phase transition as a function
of temperature: above TM � 200 K, the cubic premarten-
site becomes thermodynamically more stable than the
tetragonally deformed martensite, but the transition from
the premartensite to the austenite is not yet reproduced.
The reason is that entropic contributions from the lattice
vibrations (see inset of Fig. 3) are slightly larger for the
premartensite than for the austenite, thus making the pref-
erence of the premartensite at T ¼ 0 K larger with increas-
ing temperature. The premartensite, however, originates
from a structural relaxation of the austenite, which should
cause the vibrations to become harder rather than softer
and so to decrease the entropy. This anomaly was analyzed
to be an indirect effect of the larger thermal expansion
coefficient of the premartensite. Figure 3 also shows that an
estimate of TM from the austenite-martensite free energy
crossing within the quasiharmonic approximation leads to
a significant shift to higher temperature (TM � 270 K)
than the TM � 175 K [10] based on the simpler Debye
approximation.
In the final step, we include the effect of magnetic

excitations as outlined above. The inclusion of these ex-
citations has a striking effect on the free energies and on
the resulting phase diagram (see Fig. 4). Most importantly,
the magnons make the austenite the stable phase at a
temperature of TPM � 240 K. Now, imaginary frequencies
show up in the premartensite. We estimate the error intro-
duced by dropping these as before; a shift in the transition
temperature of maximally þ30 K results. The calculated
value for the premartensitic transition temperature is,
therefore, in very good agreement with those found experi-
mentally [1,2]. The inset of Fig. 4 shows that the entropic

FIG. 3 (color online). Calculated quasiharmonic free energies
(F, meV=atom) as a function of temperature (T, K) for the 3
relevant phases of Ni2MnGa. The respective ground state mag-
netic moments have been used and data are plotted relative to the
martensite. The inset shows the first derivatives S ¼ �dF=dT
(kB=atom) for the same temperature range.

FIG. 4 (color online). Calculated free energies (F, meV=atom)
including both vibrational and magnetic excitations as a function
of temperature (T, K) for the 3 relevant phases of Ni2MnGa.
The inset shows both the vibrational and the total first derivatives
S ¼ �dF=dT (kB=atom). All data are plotted relative to the
martensite.
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FIG. 2 (color online). Phonon spectrum of the austenite, the
unmodulated martensite and the threefold modulated premarten-
site of Ni2MnGa in the [110] direction. The lines are ab initio
data for the T ¼ 0 K volumes. Imaginary phonon frequencies of
the austenite are plotted negative. The symbols in the austenite
spectrum are neutron scattering data [2]. Note that the premar-
tensitic Brillouin zone is sixfold reduced relative to that of the
austenite and that its [110] path is enlarged for better visibility.

PRL 102, 035702 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

23 JANUARY 2009

035702-3



contributions from both magnons and phonons of the pre-
martensite and austenite only slightly differ. We, therefore,
conclude that the existence of the premartensite transition
is a delicate interplay of the two excitation mechanisms:
the magnetic excitations overcompensate the anomalous
vibrational entropies.

The magnetic entropy also stabilizes the premartensite
faster relative to the martensite and consequently decreases
the martensitic transition temperature by 50 K to TM �
150 K. This reflects the experimental situation well, be-
cause this study did not consider intermartensitic transi-
tions to the modulated martensite phases [30,31]; these
would extend the stability region of the martensite, but
the determination of the required phonon spectra at least
doubles the supercell sizes and triples the number of
atomic displacements.

Similarly to Fig. 3, one can study the stability of the
martensite phase due to the magnetic excitations alone.
This, again, yields a transition temperature slightly below
200 K, meaning that magnons and phonons are equally
important for the martensitic transition.

In conclusion, by combining density functional theory
with the quasiharmonic approximation and fixed-spin-
moment calculations, we were able to determine the tem-
perature dependence of the free energy including both
vibrational as well as magnetic excitations for Ni2MnGa.
Only the combined approach reproduces the rather com-
plex sequence of phase transitions and provides a very
good description of the temperature dependent phase dia-
gram of this MSM alloy. Moreover, the mechanisms driv-
ing the phase transitions were understood from the subtle
differences of vibrational and magnetic effects: they both
contribute to the martensitic transition, but the premarten-
sitic transition is driven by the magnetic effects alone,
overcompensating those of the vibrations. We believe
that this insight will allow for a more systematic search
of chemical trends and improvements of the magnetic
shape memory properties.
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