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Large tokamaks capable of fusion power production such as ITER, should avoid large edge localized

modes (ELMs), thought to be triggered by an ideal magnetohydrodynamic instability due to current at the

plasma’s separatrix boundary. Unlike analytical work in a cylindrical approximation, numerical work

finds the modes are stable. The plasma’s separatrix might stabilize modes, but makes analytical and

numerical work difficult. We generalize a cylindrical model to toroidal separatrix geometry, finding one

parameter �0 determines stability. The conformal transformation method is generalized to allow nonzero

derivatives of a function on a boundary, and calculation of the equilibrium vacuum field allows �0 to be

found analytically. As a boundary more closely approximates a separatrix, we find the energy principle

indicates instability, but the growth rate asymptotes to zero.
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Introduction.—Tokamak experiments allow controlled
fusion of deuterium and tritium nuclei in a toroidal axi-
symmetric magnetically-confined plasma, and offer a po-
tential technology for fusion power production. However,
plasma instabilities at the plasma’s edge (ELMs), could
significantly erode plasma facing components in a large
device such as ITER [1]. Our understanding of ELMs is
based on an ideal magnetohydrodynamic (MHD) instabil-
ity, but numerical studies are sensitive to approximations
near the separatrix separating plasma from vacuum [2], and
there has been little analytic progress. At fixed toroidal
angle, the separatrix of modern tokamak plasmas has a
cross sectional shape with at least one point at which it
forms a sharp, typically 90� angle where the poloidal (but
not toroidal), magnetic field component becomes zero.
This X point makes the geometry difficult to study analyti-
cally, and causes numerical problems.

Careful numerical work [3] has nonetheless suggested
that a separatrix at the plasma-vacuum boundary can sta-
bilize the instability that is thought to trigger ELMs. This is
surprising because the strong current gradient at the plasma
edge that provides the drive for the instability is unaffected
by a separatrix. Furthermore, analytical work [4] in a
cylindrical approximation found the mode always un-
stable, regardless of cross-sectional shape, though it did
not consider how the growth rate might be affected as a
separatrix shape is approximated.

Here we study the stability of edge-current driven modes
in a plasma cross section with a separatrix. We tackle the
underlying physical and mathematical difficulties, namely,
we: (i) establish a simple toroidal MHD model for edge-
current driven modes that does not couple to pressure-
driven modes, (ii) analytically calculate equilibrium vac-
uum fields in a separatrix geometry, (iii) analytically cal-
culate (for high toroidal mode number), the parameters �W
and �0 (defined later), needed to determine the mode’s (in)
stability. This Letter is intended to serve as a summary and

introduction to a full and detailed treatment to be presented
elsewhere.
The Peeling mode.—The stability of an ideal magneto-

hydrodynamic (MHD) plasma equilibrium is determined
by the competition between the stabilizing influence of: the
magnetic field, plasma compressibility, and the energy
associated with the perturbation to the magnetic field of
any surrounding vacuum, and the destabilizing influence
of: the pressure gradient, current gradients, and current in
the plasma. This may be seen from the energy principle’s
[5] �W, from which stability is usually determined by the
sign of �W ¼ �WF þ �WS þ �WV , where �WV is the
perturbed energy of the surrounding vacuum, �WF con-
tains a stabilizing contribution from the magnetic field and
the plasma compressibility, and a destabilizing contribu-
tion from the pressure gradient and the plasma’s current,
�WS is a surface integral that was obtained by integrating
by parts with respect to radius, and implicitly contains a
destabilizing drive from the current gradient. At a bound-
ary between a current-carrying plasma and a vacuum, the
current gradient can be especially strong, because the
current reduces to zero in the vacuum. This suggests the
possibility for a radially localized mode at the plasma’s
edge, whose stability is solely determined by the competi-
tion between the destabilizing drive from a strong current
gradient at the plasma-vacuum boundary, and the stabiliz-
ing influence of the magnetic field at the edge and in the
surrounding vacuum. This mode is often called a
‘‘Peeling’’ or ‘‘external kink’’ mode, respectively referring
to its radial localization and the need for a current to drive
it unstable (like the internal ‘‘kink’’ mode). This physical
description of a Peeling mode (PM) suggests that its
stability is determined by �W ¼ �WS þ �WV , where
�WS contains the strongest edge-localized contributions
to �W, so that the radial localization of the mode then
allows �WF to be neglected. By considering a general-
ization of a simple cylindrical geometry PM model to
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toroidal geometry in a high toroidal mode number limit n,
this is explicitly shown to be the case, as outlined below.

We linearize the ideal MHD equations about a cylindri-
cal plasma equilibrium, with the approximation of a
plasma surface marking a sharp transition from plasma to
vacuum, and integrate the resulting equations radially from
just inside the plasma surface to the vacuum just outside. A
plasma perturbation produces a perturbed magnetic field
with a discontinuous radial derivative across the plasma
surface. This discontinuity, and the strong current gradient
at the plasma’s surface both give non-negligible contribu-
tions to the equations. For cylindrical polar coordinates (r,
�, �), with m and n poloidal and toroidal mode numbers,

respectively, and a plasma displacement ~�� ~�0e
im��in�,

marginal stability requires [6]

0 ¼ ��0 þ Jk (1)

with Jk ¼ r
Bp

~B� ~J
B , � ¼ m�nq

m , �0 ¼ lim�!0½ rbr
dbr
dr �þ��� with

�� in the plasma, þ� in the vacuum, q is the ‘‘safety
factor’’ [5] (the number of times a field line goes toroidally
around the plasma for one poloidal turn), and br is the
radial component of the perturbed magnetic field. (m and n
may be chosen to ensure the equation is satisfied to arbi-
trary accuracy.)

In the high-n limit, we have generalized this calculation
to toroidal geometry, considering an axisymmetric toroidal
system with orthogonal coordinate system [5] (c , �, �)

Jacobian J�, and equilibrium magnetic field [5] ~B ¼
Iðc Þ ~r�þ ~r�� ~rc , with c the poloidal magnetic

flux. To generalize the trial function of ~�� ~�0e
im��in� to

toroidal geometry, we replace the cylindrical angle � with
� ¼ 1

q

R
� �d�, where � ¼ IJ�=R

2 is the local field-line

pitch, and R the major radius. This is the same trial
function used by Laval et al. [4]. Generalizing the cylin-
drical calculation to toroidal geometry, we find that at
high-n marginal stability is identical to solving 0 ¼
�WS þ �WV , with �WS as given in Ref. [7]. Therefore
we define the PM by �WF � �WS þ �WV , and the mini-
mization of �W ¼ �WS þ �WV . The trial function gives

�W ¼ �2�2 j�mj2
R0

�ð��0 þ ĴÞ; (2)

the same form as the cylindrical case [6], but with

�0 ¼ lim
�!0

�
1

2�

I
dlR0Bp

I2

R2B2
p

@
@c ð ~rc � ~B1Þ

~rc � ~B1

�þ�

��
; (3)

Ĵ ¼ 1

2�

I
dl

IR0

R2Bp

~J � ~B

B2
(4)

and � ¼ m�nq
nq , �c ¼ ~rc � ~� ¼ �mðc Þeim��in� the trial

function, R0 a measure of the major radius, and dl an
infinitesimal element of arc length in the plasma surface
at fixed toroidal angle. This extends previous work in
allowing arbitrary currents at the plasma surface and arbi-
trary toroidal geometries. It also gives a simple stability
criterion for edge-current driven PMs, without coupling to
pressure-driven modes, for example. The decoupling from
pressure-driven modes is possible because PMs neglect
�WF. The integrals of Eqs. (3) and (4) are dominated by
the divergence in 1=Bp at the X point, hence toroidal

effects only appear through the X point’s position deter-
mining Rwhen the integrand is large. Minimizing �W with
respect to � (or equivalently n), gives

�W ¼ �2

2

j�mj2
R0

�
Ĵ2

�0

�
(5)

so that stability will be determined by the value of �0.
Evaluating �0.—In the PM model, �W is determined by

quantities at the plasma’s surface. At equilibrium we as-

sume that the magnetic fields in the vacuum ~BV , and the

plasma ~B, are equal at the plasma surface. The angle � ¼
1
q

R
� �d� may be written as an integral along the plasma

surface at fixed toroidal angle with � ¼ 1
q

R
l I
R2

dl
Bp
.

Therefore at the plasma surface � is determined by ~BV .
More generally, we will find that for the large aspect ratio
limit �0 and �W are determined solely by the equilibrium
and perturbed vacuum fields. This is important because
vacuum fields satisfy Laplace’s equation, and in a large
aspect ratio limit the system is approximately two dimen-
sional; properties that allow a conformal transformation [8]
to be used.
Conformal transformations are mappings by an analytic

function, and ensure that a function satisfying Laplace’s
equation will continue to do so in the transformed co-
ordinates. Textbook methods require either the function
or its normal derivative to be zero on the boundary. This
greatly simplifies the calculation, allowing an analytic
solution to be obtained; but we find that this is not essen-

tial. The magnetic field in the vacuum has ~r� ~BV ¼ 0 and
~r � ~BV ¼ 0, and hence may be written as the gradient of a

scalar with ~BV ¼ ~rV and r2V ¼ 0. Under an analytic

FIG. 1 (color online). The Karman-Trefftz function [9] maps
from a circular boundary to a separatrix. The angle 	 parameter-
izes the position wðzð	ÞÞ on the separatrix.
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map with z ! wðzÞ, we find the normal component of the
field on the boundary transforms according to nz � Bz ¼
j dwdz jnw � Bw where the unit normals nz;w and fields Bz;w are

complex numbers interpreted as vectors in the usual way
[8], the subscripts indicate their evaluation in the circular
cross-section system (z) or the separatrix boundary (w).
The dot product refers to the sum of the products of the real
and imaginary components, respectively. Now, instead of
directly obtaining an analytical solution (the case if the
function or its normal derivative are zero on the boundary),
a two-dimensional problem is reduced to one dimension.
We illustrate the method by outlining the calculation of
�WV .

It is well known [8] that the field Bz and the volume

element ~drz transform as Bw ¼ dz
dwBz and ~drw ¼ j dwdz j2 ~drz.

Therefore, �WV ¼ R jBwj2 ~drw ¼ R jBzj2 ~drz, giving the

vacuum energy in terms of the vacuum energy for the
circular cross-section system. Solutions for the vac-
uum field in the circular cross-section system give �WV

as a sum of Fourier coefficients with �WV ¼
2�2R0

P
p�0jpjjapj2. The coefficients ap are determined

from the boundary conditions. The boundary conditions for
the circular cross-section system are found from nz � Bz ¼
j dwdz jnw � Bw and the plasma-vacuum boundary conditions

of ~rc � ~BV
1 ¼ ~rc � ~B1. In our notation RBwnw � Bw ¼

~rc � ~BV
1 , and we use ~rc � ~B1 ¼ ~B � ~r�c , and the trial

function �c ¼ �mðc Þeim�ð	Þ�in� whose poloidal depen-

dence is parameterized by the angle 	 in the circular
boundary system. Projecting out the Fourier coefficients
gives

ap ¼ ip

jpj�
�m

R0

1

2�

I
eim�ð	Þ�ip	d	: (6)

To obtain �ð	Þ we use a conformal map to calculate an
equilibrium vacuum field for a separatrix equilibrium. By
combining a vertical and a circulating field, a vacuum field
with a circular boundary on which the field is zero at a
single point may be produced. Using the Karman-Trefftz
[9] function to transform the field to one with a separatrix
boundary (Fig. 1), gives a vacuum field for which the

boundary condition of ~n � ~B ¼ 0 is satisfied, with ~Bp ¼ 0

at the X point (Fig. 2).
The poloidal field at the separatrix is parameterised by 	

in the circular cross-section system, leading to analytic
expressions for �ð	Þ and q. Near the separatrix �ð	Þ ’
ct
q

R
	
��

d	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2=2þ�2=2a2

p and q ’ ct
ffiffi
2

p
� lnða=�Þ, ct is a constant

and �=a ! 0 as we more closely approximate a separatrix.
We now have all the analytical expressions needed to
calculate the vacuum energy �WV . We may write the
sum as

P1
p¼�1 pjapj2 þ 2

P�1
p¼�1 jpjjapj2 and exactly

resum the first expression for which
P1

p¼�1 pjapj2 ¼

�2 j�mj2
R2
0

m noting that we expect japj2 to be peaked near

p�m� nq � 1 and hence
P�1

p¼�1 jpjjapj2 �P1
p¼�1 pjapj2. The calculation and its approximations

have been confirmed by a saddle point approximation.
Repeating the calculation with a simple piecewise linear
function for �ð	Þ, that tends to a step function as we
approach the separatrix, gives the same answer. This sug-
gests that for large mode numbers the result is generic and
independent of the detailed form of �ð	Þ.
We obtain �0 similarly, but also use nz � rz ¼

j dwdz jnw:rw, an expression tested by calculating �WV

from its surface integral representation. The details of the
calculation will be described in detail elsewhere, but the
result is that �0 ¼ �2m, the same as for an equivalent
perturbation in a circular cross-section system.
Peeling mode stability.—For �0 ¼ �2m, Eq. (5) for �W

is clearly negative, consistent with previous analytical
work [4]. This is usually taken to indicate instability.
However the growth rate 
 determines how unstable the
mode is, from [5]


2 ¼ ��W=
Z

�0j�j2 ~dr: (7)

The MHD modes with minimum �W have [5], ~r � ~� ¼
0, requiring �? ¼ i

n
~rc � ~r�c , where ~� ¼ �B

~B=B2 þ
�? ~B� ~rc =R2B2

pB
2 þ �c

~rc =R2B2
p. However, to keep

the field-line bending of order 1, a mode must oscillate
m� nq times, requiring �? / q0�c , as may also be seen

by differentiating the trial function. If we approximate j�mj
as a power law and assume q has a logarithmic dependence
on c near a separatrix (found here and elsewhere), then

writing ~dr ¼ dl
Bp
dc d� gives

Z
�0j�j2 ~dr /

Z
j�mj2q02dc � j�mj2q0 (8)

Thus the rapid mode oscillations near an X point and

FIG. 2 (color online). A vertical and rotating field can be
combined to form a field that is zero at a point on a circular
boundary [8,9] (left figure). A Karman-Trefftz transformation
maps the boundary to a separatrix, with zero field at the X point
(right figure).
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~r � ~� & 1, leads to a kinetic energy that diverges at a rate
proportional to q0.

To calculate the growth rate we take ~r� � ~J � 0 and

approximate Ĵ by Ĵ ’ R3
0

~r�� ~J
2�I

H I
R2

dl
Bp

¼ qR3
0
~r� � ~J=I.

Then with �0 ¼ �2m ’ �2nq we find Ĵ2=�0 � q=n.

The divergence in Ĵ is due to the normalization of �c �
RBpj ~�j, that is used in many calculations and codes in-

cluding ELITE [10], the effects of which will cancel when

the growth rate is calculated. We use Ĵ2=�0 � q=n in
Eq. (5) and substitute this and Eq. (8) into Eq. (7) for the
growth rate, then with 
2

A 	 B2=ð�0R
H
dlÞ, we find

lnð
=
AÞ ¼ �1
2 lnðsÞ (9)

for a boundary that approximates a separatrix with a mag-
netic shear s / q0=q that tends to infinity. This has sub-
sequently been compared with results from ELITE [11],
and excellent agreement is found (Fig. 3).

Whereas �W is minimized by ~r � ~� ¼ 0, minimization
of �W does not necessarily maximize the growth rate.

However, if we allow ~r � ~� � 0 so as to keep the kinetic

energy term of order 1, then we instead find ~r � ~�� q0, and
the plasma compressibility is strongly stabilizing.
Therefore the strong deformation of flux tubes near an X
point either leads to a diverging kinetic energy or strong

stabilization through ~r � ~� ! 1. This could be avoided by
a mode that becomes zero near the X point, but that will
increase the stabilization from field-line bending.

Conclusions.—For high-n we have generalized an ideal
MHD model for PMs to toroidal geometry. It is not com-

plicated by coupling to pressure-driven modes, for ex-
ample, and is in quantitative agreement with ELITE. A
quantitative comparison was possible by an analytical
calculation of �W using conformal transformations in a
more general way than is usual. Our model allows us to
explicitly see that whereas the drive for instability remains
(as physically expected and reflected in us finding �W < 0
as for previous analytical work), the kinetic energy di-
verges and causes the growth rate 
=
A ! 0 (consistent
with numerical calculations). The physical origin of this is
the strong deformation of flux tubes near an X point, that
either strongly stabilize due to the plasma’s compressibility
(that is eliminated in ideal MHD studies that minimise
�W), or to a diverging kinetic energy. Therefore we believe
the stabilizing effect of an X point on the high-n ideal
MHD model is now understood. Future work will consider
how nonideal effects such as resistivity (that can reduce
fieldline bending, for example), will modify this picture.
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FIG. 3 (color online). ELITE [10,11] has many Fourier modes,
but a suitable equilibrium allows study of PM stability. At high
shear, Eq. (9) becomes accurate, but ELITE’s calculations be-
come challenging. Nonetheless, lnð
Þ is approximately propor-
tional to lnðq0=qÞ, with slope �0:52 close to the predicted �0:5.

PRL 102, 035003 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

23 JANUARY 2009

035003-4


