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We investigate co-evolving dynamics in a weighted network of phase oscillators in which the phases of
the oscillators at the nodes and the weights of the links interact with each other. We find that depending on
the type of the dynamics of the weights, the system exhibits three kinds of asymptotic behavior: a two-
cluster state, a coherent state with a fixed phase relation, and a chaotic state with frustration. Because of its
structural stability, it is believed that our model captures the essential characteristics of a class of co-

evolving and adaptive networks.
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Many real-world complex systems studied in physics,
chemistry, biology, and the social sciences can be regarded
as dynamical networks of active elements in which the
coupling connections and the states of the elements evolve
simultaneously. For example, recent neurophysiological
experiments indicate that the change in the strength of
the synaptic coupling between neurons depends on the
relative timing of the pre- and postsynaptic spikes [1].
Such activity-dependent change in synaptic transmission
is thought to provide a neuronal basis for realizing higher
functions of the brain, such as learning and memory.
Similarly, it has been found that in many biological and
social networks, the evolution of the network topology,
including the coupling weights, is significantly affected
by the states of the elements, and vice versa [2]. Such
coupled dynamical systems often exhibit interesting types
of collective behavior, and their networks display certain
characteristic properties [3]. Given the wide variety of the
systems in which they appear, it is important to elucidate
the essential features of such co-evolving dynamics. The
distinctive aspect of co-evolving dynamics is that the cou-
pling weights between the nodes and the states of the active
elements at the nodes interact and evolve together. We wish
to elucidate the types of behaviors that can emerge in such
systems and the functional role played by the evolution of
the coupling weights. In this study, considering a simple
model as a first step, we attempt to make progress toward
this goal.

Among many typical types of behavior exhibited by
dynamical systems, limit-cycle oscillation is widely ob-
served in real dissipative systems, and coupled limit-
cycle systems often generate a rich variety of collec-
tive behavior. Furthermore, limit-cycle oscillation is
structurally stable, and it can be described by a simple
model of phase oscillator that is mathematically tractable
[4,5]. Therefore, it is reasonable to first consider a
limit-cycle oscillator as the dynamical unit at the nodes
of the network. It is well known that, using the stan-
dard reduction technique, a network of N limit-cycle os-
cillatory system can be reduced to the coupled phase
equation
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where ¢; denotes the phase of the limit-cycle oscillation at
the ith node (i = 1, ... N), and w; is its natural frequency.
The coupling function I';;(¢) here is assumed to take the
simple form I';;(¢) = —k;;sin(¢ + @), where k;; denotes
the coupling weight of the connection from the jth to the
ith oscillator. Under suitable conditions, the parameter «
can be regarded as the phase difference induced by a short
delay of the coupling (e.g., a synaptic transmission delay)
[6].

Next, we propose a dynamical model for the coupling
weights k;;. Because it is natural that their dynamics only
depend on the relative timing of the oscillators, the follow-
ing is a reasonable form of such a model

dk;;

dtu = EAij(¢i - ¢j):
The time scale of this dynamics, represented by €', is
much longer than that of the dynamics of the oscillators,
i.e., € < 1. The condition |k;;| = 1 implies that if k;; takes
a value outside the interval [—1, 1], it is immediately set to
the appropriate limiting value (—1 or 1). This limitation is
reasonable, because the coupling weight cannot grow in-
definitely. We also numerically confirmed that the same
result is obtained when soft limitations are imposed by
adding a nonlinear term. The function A;; determines how
the changes in the coupling weights depend on the phase
differences among the oscillators. In general, A;;(¢) is a
27 periodic function. For simplicity, taking only the
lowest-order Fourier mode into account, we assume the
form A;;(¢) = A(¢) = —sin(¢ + B). The characteristics
of A(¢) can be controlled by the parameter 3.

With the above assumptions, the model proposed here is

finally given by

déi _ 1 — %Zki/ sin(¢; — ¢, + a),
J

|kij| =1 ()

dt

dk

d—tl] = —esin(¢p; — ¢; + B),

3)
|kijl =1,
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where the natural frequencies are assumed to be identical,
and we choose, w; = 1, without loss of generality. This
system is characterized by the two parameters « and g [7].
In the above simple model, the functions I'(¢) and A(¢)
are approximated by only the first Fourier mode. However,
we have theoretically and numerically confirmed that even
if small higher-order modes are included in these func-
tions, the results given below qualitatively unchanged, and
that they are structurally stable.

First, we consider the case of a two-oscillator system. In
this case, the dynamics can be written in terms of three
variables, A¢p(= ¢| — ¢,), kj» and ky, as

dsitd) = —kppsin(Agp + a) + ky; sin(—A¢ + «),
dk]2 . dkz] .
ad AP + 22— _esin(—Ad + B).
- esin(Agp + B), 7 esin(—A¢ + B)

“4)

The condition € << 1 implies that the time scale for A¢ is
much shorter than that for k;;, and hence A¢ quickly
relaxes to the equilibrium value, A¢*. (The value A¢™ is

given by the condition tan(A¢*) = —% tana, ob-
tained from % =0.) We can thus eliminate A¢ in
Eq. (4). In addition to the fixed point satisfying % =

% = (0, there is another type of steady state, in which

the weights are given by the limiting values, i.e., k;; = *=1.
Owing to the symmetry of the system, there are two types
of such steady states: symmetric, with (k},, k3,) =
(£1, =£1), and asymmetric, with (=1, +1). The condition
for the stability of these states is sgn( — sin(A¢* + 8)) =
sgn(k},) and sgn(— sin(—A¢* + B)) = sgn(k3,). From
the above analysis, we obtain the phase diagram appearing
in Fig. 1(a). We find that the two-oscillator system exhibits
three types of asymptotic states: symmetric, asymmetric,
and chaotic. Furthermore, we also obtained the phase
diagram for the case of a large number of phase oscillators
appearing in Fig. 2(a). Roughly speaking, we found that the
system exhibits three types of asymptotic states corre-
sponding to those in the two-oscillator system. Below, we
examine the dynamical properties of each state in detail,
focusing mainly on the dependence on [, because the
system not strongly depend on «.

We first investigate the region 8 € (—, 0), in which
the symmetric state is stable for the two-oscillator system.
In this case, the weights of the two directed links have the
same limiting value, i.e., (kj5, kp;) = (*1, £1), as shown
in Fig. 1. Around the center of this region, we have
A(A¢) ~ cos(A¢g) and therefore the coupling weight is
increased (decreased) when the phase difference of the two
oscillators is small (large). In other words, the evolution of
the weights obeys a like-and-like (different-and-different)
rule. Note that this situation is qualitatively similar to that
of Hebbian learning [8]. Consequently, the system exhibits
either in-phase synchronization with positive couplings or
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FIG. 1 (color online). (a) Two-parameter phase diagram of a
two-oscillator system showing the dependence on « and . The
asymptotic states can be classified into three types: symmetric,
asymmetric and chaotic. In the bistable region, both the sym-
metric and asymmetric states are stable. The bottom graphs
elucidate that the nature of A(A¢) changes with the parameter
B. (b)—(e) Phase portraits of the system in the (k|,, k,;) plane
obtained using an adiabatic approximation for each state. The
blue and green lines represent the nullclines for ki, and k,;,
respectively. The black circles indicate stable fixed points.

antiphase synchronization with negative couplings, de-
pending on the initial conditions.

For a many-oscillator system in the same parameter
region, a two-cluster state appears, as shown in Fig. 2(b).
The left graph displays the time development of the order
parameters (| %Z jeim¢f|, with m = 1, 2), and the normal-
ized rate of change of the coupling weights averaged over
all k;;. The fact that the order parameter for m = 2 con-
verges to 1 implies that a two-cluster state with antiphase
synchronization is realized, and the fact that the rate of
change of the total weight converges to zero indicates that
the weights become frozen. As a result, a stable two-cluster
steady state emerges, and the convergence time depends
little on the system size. The middle graph displays the
phase distribution after the transient period, in which the
oscillators are divided into two clusters. The ratio of the
populations of the two clusters generally depends on the
initial conditions. From the graph, it is seen that the two
clusters with almost equal sizes appear when the initial
phases are chosen uniformly from the range [0, 277). From
the right graph for the weight matrix k;;, we can see that the
couplings within a cluster (A¢ = 0) are in the state k;; =
k;; = 1, whereas those between different clusters (A¢ =
) are in the state k;; = k;; = —1. This is essentially the
same as the result for the two-oscillator system.

In the region B € (—7,%), asymmetric coupling ap-
pears in the two-oscillator system, whereas a bistable
region, in which the symmetric coupling is also stable,
exists in the region B8 € (—7,0). Around the center of
this region, we have A(A¢) ~ — sin(A¢), and thus here,
the sign of A(A¢) is opposite for A¢p = £Ap*. This
causes changes of the two coupling weights in opposite
directions. This situation is essentially the same as that in
the case of the rule for spike-timing dependent plasticity
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FIG. 2 (color online). (a) Phase diagram of an N oscillator
system (N = 200). The asymptotic states appearing in the re-
gions depicted are a two-cluster state, a coherent state with a
fixed phase relation, and a chaotic state with frustration. (b)—
(d) Three typical simulation results. (left) Time evolution of the
order parameters and the normalized rate of change averaged
over all weights. (middle) Distribution of the phase ¢; at t =
1000. The inset displays the autocorrelation function of the
phase pattern. (right) The weight matrix k;; in the final state (1 =
1000). The indices i and j of oscillators are arranged in order of
increasing phase. The parameter value is € = 0.005, and the
initial conditions for k;; were chosen randomly from a uniform
distribution on [—1, 1].

(STDP), reported recently [1]. Because of this property of
A(A¢), the weights have opposite signs with the same
strength, and this results in a J-phase-locking state.

In the case of many oscﬂlators, in contrast to that of two
oscillators, it is impossible for any pair of oscillators to
synchronize with the phase difference A¢* = =7. As
shown in Fig. 2(c), our numerical simulations reveal that
the phases of the oscillators are almost uniformly dis-
tributed, not organized into clusters. However, the fact
that the rate of change of the weights eventually vanishes
implies that the system settles into a stable steady state.
With respect to the phase patterns, the autocorrelation
function Corr(r) = (Iﬁzjei‘ﬁ/(’)e"'%("f)l) does not de-
cay, remaining constant in time. This indicates that the
relative phase relations among the oscillators are main-
tained in a steady state. From these pieces of evidence,
we can conclude that the system is in an ordered state,
which is referred to as a coherent state with a fixed phase
relation. In addition, we found through numerical compu-
tations that the relative phases and weights satisfy the
relation, k;; = sgn(—sin(¢p; — ¢; + B)). Examining the
linear stability of the coherent state with respect to per-
turbations of the phases, the eigenvalues in the simulta-
neous limits N — o0 and € — 0 can be derived as

Rer, = —% sinfle — B)/ — ; sinl — B) — 77(]( R
(coskB sin(a — B) + ksinkB cos(a — B)), when k is
even or odd. In Fig. 2(a), we present the stable region of
the coherent state determined by this analysis.

For the case of many oscillators, let us examine the
region in which both the two-cluster state and the coherent
state are unstable. As shown in Fig. 2(d), the system then
exhibits a chaotic state with frustration, in which the rate of
change of the weights does not converge to 0 and the
autocorrelation function for the phase pattern quickly de-
cays to zero. These results imply that both the structure of
the weighted network and the phase pattern continue to
change with time through their co-evolving dynamics. In
fact, in a snapshot of k;;, no coherence is observed [right
graph in Fig. 2(d)]. This behavior can be understood in-
tuitively as resulting from the appearance of a kind of
frustration between the co-evolution of the phases and
the coupling weights. In the parameter region, the function
A(A @) is qualitatively similar to — cos(A ¢). This tends to
decrease the coupling weights among synchronized oscil-
lators and to increase those among the oscillators of differ-
ent phases. As a result, both the phase pattern and the
network structure are reciprocally destabilized, as illus-
trated in Fig. 3(a). This evolution rule of the weights has
the opposite effect of the like-and-like rule (Hebbian-like)
in the case of a two-cluster state. We thus refer to this rule
as anti-Hebbian-like rule.
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FIG. 3 (color online). (a) A schematic illustration of co-
evolution of both phase oscillators and network connections.
1. The phase pattern causes the structure of the weighted network
to change. 2. The change undergone by the weights causes a new
phase pattern to appear. 3. The change of the phase pattern
results in further modulation of the weights of the network.
4. This process repeats. (b) A trajectory for the chaotic state of
the two-oscillator system, with & = 0.17, 8 = 0.557, and € =
0.005. (c¢) Lyapunov exponents as functions of €. The inset
displays a log-log plot, with a fitting curve satisfying A o €!/2.
(d) Mutual information between the initial and final phase
patterns and the entropy of the final phase pattern for the three
asymptotic states. The parameter values here are the same as in
(b), (¢), and (d) of Fig. 2. The horizontal dashed line represents
the maximum attainable entropy for the phase pattern.
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To further investigate this state, let us return to the two-
oscillator system. For the same parameter region, the phase
portrait of the dynamical system reveals that both coupling
weights converge to zero [Fig. 1(e)]. In this situation,
however, the adiabatic approximation does not hold, even
in the limit € — 0. As the weights go to zero, the effective
time scale for the dynamics of A¢™* becomes larger, and
eventually it becomes of the same order as that for the
dynamics of k;;. Therefore, we must examine the dynamics
of the original Eq. (4). Figure 3(b) displays a typical
chaotic trajectory for the system given in Eq. (4). As shown
in Fig. 3(c), we find that the largest Lyapunov exponent is
positive. For a many-oscillator system, we found through
numerical computation that the number of positive
Lyapunov exponents is proportional to the number of
degrees of freedom of the dynamical system, N2.

In summary, we have investigated co-evolving dynamics
in a weighted network of phase oscillators and found that,
depending on the nature of the evolution of the coupling
weights, this system can exhibit three distinct types of
dynamical behavior: a two-cluster state, a coherent state
with a fixed phase relation, and a chaotic state with frus-
tration. A more complete characterization of these states is
provided by the mutual information between the initial and
final phase patterns and the entropy of final phase pattern
[9]. As shown in Fig. 3(d), the mutual information is largest
for the coherent state. Because the mutual information is
the information that the initial and final states share, the
initial phase pattern is most easily inferred from the final
one in the case of the coherent state. This suggests that the
coherent state can be interpreted as representing a memory
of the phase pattern. In context of neural networks, such
sequential neural activity embedded in a network organ-
ized under STDP learning, has been studied both theoreti-
cally and experimentally with regard to the temporal neural
coding [10]. For the two-cluster state, the situation is
qualitatively similar, except that the entropy is much
smaller. This is because the allowed states of an oscillator
belonging to the two clusters is restricted to only two
possibilities. Therefore, this state is capable of representing
a memory of binary data. As stated above, this state is
organized under a kind of like-and-like rule. The emergent
clustering behavior can be interpreted as a kind of group
organization, representing such phenomena as the emer-
gence of communities or opinion formation in social net-
works, where individuals are organized according to the
similarities of their attributes [11]. The related clustering
behaviors have been discovered from the viewpoint of the
enhancement of synchronization [12]. For the chaotic state,
the fact that the mutual information vanishes implies that
the information regarding the initial state is lost with time,
and the fact that entropy is close to maximal suggests that
the system wanders over all or nearly all possible phase
patterns. Even though at the present time we cannot give an
example of this kind of chaotic state observed in real

systems, we believe that such chaotic behavior will be
seen in some type of co-evolving systems when compared
with our model. Although other important types of sys-
tems, such as networks of excitatory units and spatio-
temporal systems [13], remain to be studied, we believe
that, because of its structural stability, our model will
provide a framework for describing essential behavior in
co-evolving systems.
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