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Lattice QCD is used to calculate the potential between a static quark and antiquark in the presence of a

finite density of �þ ’s. Correlation functions of multiple �þ’s are used in conjunction with Wilson-loop

correlators to determine the difference between the Q �Q potential in free space and in the presence of a

pion condensate. The modifications to the potential are found to have significant dependence on the Q �Q

separation over the range r & 1 fm explored in this work. Our results are consistent with the pion-

condensate behaving as a (nonlinear) chromodielectric.
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Introduction.—Flavor dynamics plays a central role in
the study of heavy-ion collisions and, ultimately, in unrav-
eling the phase structure of matter at finite temperature and
density. The production, evolution, and detection of the
heavy flavors, charm, and bottom, in such collisions has
long been known to be sensitive to the presence of decon-
fined phases of quantum chromodynamics (QCD), such as
the naive quark-gluon plasma or ‘‘the perfect fluid’’ seen at
RHIC [1,2]. Color charges are screened in a deconfined
phase, and the production of a given state of quarkonium is
expected to be suppressed when the screening length be-
comes comparable to, or smaller than, its size [3] (for a
recent discussion see Ref. [4]). However, quantitative cal-
culations of ‘‘J=c suppression’’ and more generally
‘‘quarkonium suppression’’ in heavy-ion collisions are
difficult due to the enormous complexity of such collisions.

Understanding the behavior of a static quark, Q, and
static antiquark, �Q, pair produced in a heavy-ion collision
requires knowledge of its dynamics in both the deconfined
and hadronic phases. In the hadronic phase, the potential
between a static quark and static antiquark (denoted as the
Q �Q potential) can be screened by the hadrons that partici-
pate in the collision. Differences between this ‘‘hadronic
medium effect’’ and the effect of a deconfined phase are
telltale signatures of a deconfining phase transition in
heavy-ion collisions. As a step to improving the descrip-
tion of Q �Q transport in the hadronic phase we present the
results of a Lattice QCD calculation of the modifications of
theQ �Q potential and force resulting from the presence of a
condensate of charged pions (either all �þ’s or all ��’s) in
the absence of electromagnetism. The Q �Q potential is
found to be lowered in the condensate, with a nontrivial
dependence upon the Q �Q separation, leading to a reduced
Q �Q force.

It is useful to consider the behavior of the in-medium
Q �Q potential and force in the limiting cases where the Q �Q
separation, R, is much smaller than, or much greater than,

the scale of chiral symmetry breaking, ��, that typifies

hadronic interactions. In the R�� � 1 limit, it is appro-

priate to construct an effective field theory (EFT) describ-
ing the interactions between the Q �Q with the gluon fields.
The coefficients in this EFT are determined via a multipole
expansion of the matrix elements calculated in QCD. The
interactions between the Q �Q state and the hadronic back-
ground are thereby factorized into short-distance parts
encapsulated in the coefficients of the EFT, and low-energy
matrix elements of local operators composed of quark and
gluon fields (explicitly independent of R). This method [5]
has been used to calculate the binding energy of quark-
onium to infinite nuclear matter [6], and quarkonium scat-
tering from nucleons [7]. The interactions of a spatially
averaged and orientation-averaged Wilson-loop with quark
and gluon fields, at leading order in the strong-coupling
and derivative expansion, are described by an effective
Lagrange density of the form

L ¼ R3SySG��G
�
� ½c1g�� þ c2v

�v��; (1)

where S is the operator that annihilates theQ �Q pair,G�� is

the gluon-field strength tensor, v� is the Q �Q-pair four-
velocity. The renormalization-scale dependent coefficients
ci that appear in Eq. (1) are dimensionless and are expected
to be of order unity by naive dimensional analysis. The
Lagrange density in Eq. (1) makes explicit the separation
dependence of the in-medium component of the potential
(/R3) and force (/R2) for R�� � 1.

At extremely large distances, the ground state of the
system is a heavy meson-antimeson pair in the pion con-
densate interacting through the exchange of hadrons de-
scribed by an effective field theory analogous to that used
to describe the interactions of nucleons. In QCD, the force
between these heavy mesons is Yukawa-like with a mass
scale set by the pion mass.
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At intermediate distances and in vacuum, the
ground state of the system has the Q �Q potential increasing
with separation, and the gluonic field configuration be-
tween the Q �Q is tending toward a flux tube with constant
force between the Q �Q pair (for recent lattice calculations
see Ref. [8]). It is not obvious how the presence of a
pion condensate will modify the interactions between the
Q �Q pair. If instead, the system under consideration was a
collection of neutral hadrons in the presence of an electric
field, the energy shift of the system would depend upon the
electric polarizabilities of the hadron and the strength and
volume intersected by the electric field. An overall reduc-
tion in the Q �Q force would result, encapsulated in the
dielectric function of the medium.

The lattice QCD calculation.—The ground-state energy
of a system composed of aQ �Q pair separated by a distance
R and n-�þ’s can be extracted from the correlation func-
tions

Cnðt�; tÞ ¼ h0j
�X

x

��þðx; tÞ�y
�þð0; t�Þ

�
nj0i;

CWðR; tw; tÞ ¼ h0j X
y;jrj¼R

W ðy þ r; t; y; twÞj0i;

Cn;WðR; t�; tw; tÞ ¼ h0j
�X

x

��þðx; tÞ�y
�þð0; t�Þ

�
n

� X
y;jrj¼R

W ðy þ r; t; y; twÞj0i;

(2)

where ��þðxÞ ¼ uaðxÞ�5
�daðxÞ is a pseudoscalar interpolat-

ing operator for the �þ (a is a color index), and
W ðy; t0; y þ r; tÞ is the Wilson-loop operator formed
from products of gauge links joining the vertices at (y,
t0), (y þ r, t0), (y þ r, t), and (y, t). At large times, the
static Q �Q potential in vacuum is extracted using

X
tw

CWðR; tw; tw þ tÞ ���!t!1
Ae�VðRÞt: (3)

It is useful to define the ratio of the three correlation
functions in Eq. (2),

Gn;WðR; t�; tw; tÞ ¼ Cn;WðR; t�; tw; tÞ
Cnðt�; tÞCWðR; tw; tÞ ; (4)

from which the in-medium modification to the potential
can be extracted, for tw � t� (the pion system takes a
longer time to reach its ground state than the Wilson loop
and so its source is earlier in time),

�
log

� ðGn;WðR; t�; tw; tw þ tÞ
Gn;WðR; t�; tw; tw þ tþ 1Þ

��
tw

���!t!1
�VðR; nÞ; (5)

where the h. . .itw denotes an average over a number of

initial time slices for the Wilson loop, tmin
w to tmax

w . It is
possible that the uncertainties in our analysis can be
slightly decreased by accounting for correlations among
different tw.

We have computed the correlators in Eq. (2) in mixed-
action lattice QCD, using domain-wall valence quark
propagators from a Gaussian smeared source on rooted-
staggered MILC gauge configurations (see Refs. [9,10] for
details). Here we focus on calculations on an ensemble of
1001 lattices with a pion mass of m� � 320 MeV, and a
lattice spacing of b ¼ 0:087ð1Þ fm with dimension 283 �
96 giving a spatial dimension of �2:5 fm. Propagators
were calculated with both periodic and antiperiodic bound-
ary conditions in the time direction and combined to
effectively double the length of the time direction leading
to long plateaus in effective energy plots of the mesonic
correlators. The light quark propagators were computed
after the gauge field had undergone a single level of hyper-
cubic (HYP) smearing [11], while Wilson loops were
calculated with NHYP ¼ 0, 1, 2, and 4 levels of HYP
smearing of the gauge field. Further, the spatial links of
the Wilson loops were APE smeared [12,13] in the
transverse-spatial directions to optimize the signals for
CWðR; tw; tÞ. The increasing levels of HYP smearing result
in improved signal-to-noise ratios and enable the potential,
and in-medium modifications to the potential, to be deter-
mined over a range of Q �Q separations. The correlation
functions Cnðt�; tÞ have been previously calculated on
these lattices, enabling a study of the properties of the
pion and kaon condensates, and the three-meson interac-
tions [14–16].
Correlated fits are performed to the effective energies (or

energy differences), e.g., Eq. (5), for each Q �Q separation
and number of pions in the volume. Separately, jackknife
and bootstrap procedures were used to generate the covari-
ance matrix over the given fitting interval of time slices, t in
Eq. (5), and correlated �2 minimization was performed to
extract the energy and its associated statistical uncertainty.
A systematic uncertainty is determined by a comparison of
the various fit procedures and various fitting ranges (in-

cluding the choice of tmin=max
w ; typically tmin

w � t� þ 20 and
tmax
w � tmin

w � 40).
The Q �Q potential in vacuum is determined from CW ,

and the Q �Q force is determined by correlated
finite differences of the potential. Our results for these
two quantities are shown in Fig. 1. By comparing the force
in vacuum calculated with different levels of HYP smear-
ing, we ascertain the separations at which the force (and
potential) cease to be significantly contaminated by the
smearing procedure. We conclude from Fig. 1 that the
potential and force calculated at separations R> bNHYP

are close to the result of an unsmeared calculation. In our
analysis, we assume this also holds in the presence of the
pion medium and only present measurements that satisfy
this criterion. In every case where multiple different smear-
ings satisfy the criterion, there is complete agreement
between them. Three representative effective energy plots
associated with the in-medium contributions to the poten-
tial are shown in Fig. 2. Typically, signals become noisier
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as either R or n increases, restricting the present analysis to
R & 1 fm.

The in-medium contributions to the Q �Q potential,
�VðR; nÞ, resulting from both a single pion in the lattice
volume [a pion number density of 	0 � 1=ð2:5 fmÞ3 ¼
0:064 fm�3], and from five pions in the lattice volume
(	 ¼ 5	0 ¼ 0:32 fm�3), are shown in Fig. 3. For 	 &
7	0 they are found to be linear in the density within the
uncertainties of the calculations, as can be seen for a
representative R in Fig. 4. We note that in-medium con-
tributions to the potential as small as �Vðb; 1Þ � 100 keV
have been determined. For the system containing a single
pion in the lattice volume, the energy shift can be directly
related to the scattering phase shift using Lüscher’s method
[17]. Therefore, the �VðR; 1Þ shown in Fig. 3 can be used to
determine the scattering length associated with a Q �Q pair
of fixed separation and a pion.

The effects of the medium on the radial Q �Q force,
�FðR; nÞ, are determined from the effective energy-
differences derived from finite differences of �VðR; nÞ

with respect to R. The modifications to the force at den-
sities 	0 and 5	0 are shown in Fig. 5. TheQ �Q force is seen
to be reduced by an approximately R-independent amount
over the separations and pion densities we have been able
to explore.
The in-medium potential and force have also been cal-

culated on MILC lattices of the same spatial volume as the
configurations used here, at four different quark masses,
but at a coarser lattice spacing (b� 0:125 fm). We find the
results at the corresponding pion mass are consistent,
suggesting that lattice discretization errors are not large.
However, the uncertainties in the medium modifications to
the Q �Q potential and force are somewhat larger than those
on the current ensemble. A mild variation with the pion
mass was observed, however, more precise calculations are
required in order to quantify this dependence.
Discussion.—In-medium effects play an important role

in the diagnostics used to explore new phases of matter in
heavy-ion collisions, and more generally emerge as useful
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FIG. 2 (color online). Representative effective energy plots for
the in-medium contributions to the potential. The horizontal
band corresponds to the combined statistical and systematic
uncertainty of the respective fit.
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FIG. 3 (color online). The in-medium contributions to the Q �Q
potential at a pion densities of 	0 and 5	0. The inner uncertainty
associated with each point is statistical, while the outer is the
statistical and systematic uncertainties combined in quadrature.
Different HYP smearings are offset for clarity.

NHYP 1 NHYP 2

0 1 2 3 4 5 6 7 8 9 10

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.32 0.35 0.36 0.38 0.40 0.42 0.45 0.48 0.50 0.53

n Ρ0

V
R

0.
24

fm
,n

M
eV

µI GeV

δ

FIG. 4 (color online). The in-medium contribution to the Q �Q
potential at R� 0:24 fm as a function of the number of pions.
The uncertainties are as described in Fig. 3. The isospin chemical
potential of the system is shown on the upper axis [16].
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FIG. 1 (color online). The Q �Q force in vacuum determined
with different levels of HYP smearing. Inset is the Q �Q potential
with these same smearings, each normalized to VðR0Þ ¼ 0 at
R0 ¼ 5b. Horizontal uncertainties in FðRÞ arise from its con-
struction by finite differences.
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quantities in the context of mean-field constructions in
many-body systems. We have performed the first QCD
calculation (without electromagnetism) of modifications
to the Q �Q potential and force in a hadronic medium by
calculating the energy of a Wilson loop in the presence of a
condensate of charged pions. The attractiveQ �Q interaction
is found to be reduced by the hadronic medium over the
range of separations we were able to explore, R & 1 fm.
This is a first step toward a more systematic exploration of
in-medium effects with lattice QCD, with the ultimate goal
of looking for in-medium modifications of hadronic ob-
servables in backgrounds of baryons. Such calculations
will require significantly more computational resources
than are currently available, and precise calculations of
multibaryon systems are a prerequisite.

At 	0, our calculations are analogous to those of
J=c � � scattering lengths (with the J=c replaced by a
Wilson loop) which have been performed previously in
QCD [18] and quenched QCD [19]. At higher densities,
the calculations involve multipion backgrounds and are
the first of their kind. A nonzero three-pion interaction
is required to describe the volume dependence of the
energy levels of n > 2 �þ’s in these volumes, see
Refs. [14–16]. However, within the uncertainties of our
calculations, the multipion–Q �Q-pair interactions are found
to be consistent with zero over the range ofQ �Q separations
we have explored as the medium modifications depend
linearly on n. It is important to refine this work by perform-
ing higher-statistics calculations in order to determine
the multipion interactions with the Q �Q pair. In addition,
with a corresponding calculation of the pionic matrix
elements of the gluonic operators in Eq. (1), the coeffi-
cients, ci, in Eq. (1) could be determined.

From our analysis we observe that the medium modi-
fication of the force is independent of theQ �Q separation in
the region where the force in vacuum is becoming constant.

This is consistent with the pion-condensate behaving as a
dielectric in the volume of the color flux tube between the
Q �Q pair. It implies that the pion and, collectively, the
condensate has a chromosusceptibility, which is expected
to be highly nonlinear in the gluon-field strength. At small
separations, the modification to the force appears consis-
tent with the behavior expected from Eq. (1), but calcu-
lations at smaller lattice spacing are required to confirm
this.
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FIG. 5 (color online). The in-medium contribution to the radial
Q �Q force, �FðR; nÞ, at a pion number density of 	0 and 5	0. The
uncertainties are as described in the caption of Fig. 3.
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