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It is very likely that hadronic scattering will enter a new regime at the CERN Large Hadron Collider, as

the black-disk limit is reached. This will lead to a severe change in the t dependence of the real part and of

the slope of the elastic scattering amplitude, and in turn, this may bias the measurement of the total cross

section. We examine this issue and suggest new strategies to test the reliability of the total cross-section

measurements.

DOI: 10.1103/PhysRevLett.102.032003 PACS numbers: 13.85.Lg, 12.40.Nn

Many models predict that soft interactions will enter a
new regime at the LHC: given the huge energy, unitariza-
tion may play a crucial role as the central part of the
protons becomes black. Indeed, all simple-power fits to
lower energy data will violate unitarity in some partial-
wave amplitudes before the LHC energy. This means that
something will happen that will restore it—call it satura-
tion, unitarization, or emergence of cuts—and this will
modify the expectations one has from Regge models based
on simple poles. While conventional models predict a total
cross section from 90 to 125 mb [1], the presence of a hard
Pomeron gives around 150 mb [2–4] and U-matrix unitar-
ization can give 230 mb [5]. This clearly shows that the
uncertainties due to the underlying models, and especially
due to the unitarization scheme, are very large. One may
hope to select the true models by a measurement of the
total cross section.

The LHC will be well equipped to study in depth the
diffractive processes, as it will have a superb rapidity
coverage, and two experiments—TOTEM [6] and
ATLAS [7]—plan to measure the total cross section.
They intend to reach an accuracy on �tot of the order of
1%, which would indeed give a very stringent test of
theory. A few assumptions underlie this estimate of the
accuracy. First of all, the ratio � of the real part to the
imaginary part of the elastic scattering amplitude, is as-
sumed to be small and to vary little with t: �ðs; tÞ � 0:14
[1]. Second, the elastic cross section is assumed to fall
exponentially with t: dN=dt� expðBtÞ.

We want to show here that, if the elastic pp amplitude
reaches a new regime at the LHC, it will invalidate the
above assumptions, and the measurement of the total cross
section will be biased and much more uncertain than
foreseen. Indeed, most unitarization schemes lead to novel
properties of the elastic amplitude. The problems that we
talk about here concern a large class of models, in which
the elastic amplitude contains a fast-rising component that
needs to be unitarized. We have checked that they are
present in models saturating the profile function, in models
using analytic unitarization schemes [2] or in the Dubna
Dynamical Model [8].

To illustrate our point, we shall consider a simple uni-
tarized two-component model, which includes a soft
Pomeron and a hard Pomeron, and which we shall call
the eikonalized two-Pomeron model (ETPM). This model
is based on a fit to soft data which includes a hard Pomeron
component [9] of intercept 1.4 that accounts for the growth
of the gluon density at small x in deeply inelastic processes
[10]. Although the coefficient of the hard-Pomeron term is
small in soft data, it grows like s0:4 so that the amplitude
will reach the black-disk limit at small impact parameter b
before the LHC energy [2,11]. The amplitude must then
be unitarized and, in this simple model, we consider a
1-channel eikonal in the impact-parameter representation
[2]. The net effect of this unitarization is to make Bðs; tÞ
increase with jtj at small jtj for LHC energies, as shown in
Fig. 1. We also show in that figure that the t-dependence of
�ðs; tÞ changes drastically. We can now explore the con-
sequences of these effects on the experimental measure-
ment itself. We shall compare in the following the situation
at 2 TeV with that at 14 TeV. We insist that the curves we
give for the cross sections and for the � parameter are only
illustrative of an effect present in many models. The essen-
tial ingredients are a sizeable value of �, and the strong
dependence of � and B on t once the black-disk limit is
reached.
Fitting procedure with luminosity-dependent method.—

The number of elastic events is related to the total hadronic
cross section through the following formula:

dN

dt
¼ L

�
4��2

jtj2 G4ðtÞ

� 2�½�ðs; tÞ þ�CNðs; tÞ��totG
2ðtÞe�½Bðs;tÞjtji=2�

jtj
þ �2

tot½1þ �ðs; tÞ2�e�Bðs;tÞjtj
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�
(1)

where L is the luminosity, the first term is the Coulomb
term—� is the electromagnetic coupling constant andGðtÞ
the electromagnetic form factor given by G2ðtÞ ¼ ð4m2

p �
�tÞð4m2

p � tÞ=½�2ð�� tÞ2� with mp the proton mass,
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� ¼ 0:71 GeV2 and � ¼ 2:79—the second term is the
interference term between the Coulomb amplitude and
the hadronic amplitude—�CNðs; tÞ is the phase of the
Coulomb-Nucleon Interference (CNI) term [12]—from
which one can extract �, and the third term is the purely
hadronic contribution.

We can use this formula to generate simulated data for
two energies

ffiffiffi
s

p ¼ 2 TeV and
ffiffiffi
s

p ¼ 14 TeV, using Bðs; tÞ
and �ðs; tÞ calculated in the ETPM. We assume that 90
points will be measured in a t interval identical to that of
the UA4/2 experiment �0:1 GeV2 � t � �0:0006 GeV2

[13]. We then randomize the theoretical (‘‘true’’) curve
assuming Gaussian errors similar to those of UA4/2. The
resulting simulated data are shown in Fig. 2 for

ffiffiffi
s

p ¼

14 TeV, and correspond to the parameters given in
Table I. One can then fit these simulated data according
to Eq. (1) but assuming constant B and �. One has 2 extra
parameters besides � and B: L, the luminosity, and the
total cross section �tot, which is what one aims to measure.
The result of the fitting procedure at 2 TeV is shown in

Fig. 3, where the correlation between the value of � and
�tot is shown. If L is fixed at 1 fb�1 (i.e., if we know the
luminosity), the difference between the central values of
the fitted �tot is small� 0:3 mb; the errors from the fitting
procedure are 1 mb, and the obtained value of �tot differs

FIG. 2. The simulated data at
ffiffiffi
s

p ¼ 14 TeV, the theoretical
curve from which the data are generated (plain line) and the fit to
them for � fixed at 0.1 (dashed line).

TABLE I. Input parameters for the simulated data at
ffiffiffi
s

p ¼
2 TeV and

ffiffiffi
s

p ¼ 14 TeV obtained in EPTM model, and the
results of fits to these data with a simple exponential form of the
scattering amplitude.

input

ffiffiffi
s

p L
(fb�1)

�tot

(mb) �ðs; 0Þ
B(s,0)

(GeV�2)

2 TeV 1 82.7 0.23 18.7

14 TeV 1 152.5 0.24 21.4

output for L and � fixed

2 TeV 1 83:61� :44 0.15 23:6� 0:2
2 TeV 0.95 85:80� :45 0.15 23:6� 0:2

output for all parameters free

2 TeV 0:93� 0:07 85:2� 3:0 0:15� 0:04 18:10� 0:25
14 TeV 1:15� 0:05 142:3� 2:8 0:29� 0:06 23:6� 0:2

FIG. 3. The size of �tot obtained by fitting the simulated data
assuming a fixed value of � at

ffiffiffi
s

p ¼ 2 TeV with L fixed at the
input value (upper panel) and with free L (lower panel); the
diamond gives the true value of �tot and �ðs; 0Þ.

FIG. 1. Results of the ETPM model: �ðs; tÞ (upper panel) and
Bðs; tÞ (lower panel) at 100 GeV (plain curve), 500 GeV (long
dashes), 5 TeV (short dashes) and 14 TeV (dash-dotted curve).
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from the input by 0.5 mb. Avery different picture appears if
we fit the luminosity. We obtain then an error ��tot ¼
1:9 mb and the correlation between �tot and the assumed
value of � is very high, as seen in Fig. 3 and Table I. The
result of a joint fit to L, B, �tot and � is also shown in
Table I. All parameters are within 1�, except �ð0Þ which is
2� from the input.

The situation at
ffiffiffi
s

p ¼ 14 TeV is much worse: one sees
from Fig. 4 that the result of the correlation between � and
�tot increases drastically: even if one knows the luminosity,
the dependence of �tot on � is very strong. The difference
between the true�tot and the fitted value reaches 2.5 mb, as
shown in Table I. All the parameters are now several
standard deviations from their true value. Note also that,
because the CNI term is negative, a decrease in � from its
true value 0.24 to 0.1 leads to an increase in the value of
d�=dt, as seen in Fig. 2.

Fitting procedure with the luminosity-independent
method.—Another way to extract the total cross section
(for example, see [14]) is the luminosity-independent
method, which gives

�tot ¼ 16�

1þ �2

ðdNel=dtÞjt¼o

Nel þ Ninel

: (2)

To obtain the information needed for this method, one must
measure the elastic rate at values of jtj large enough to
neglect the Coulomb amplitude [15]. Hence, one hopes to
obtain a more accurate result with less information.

This method relies on the hope that Nel þ Ninel can be
measured accurately. However, there are three problems.
The first one concerns the Coulomb and CNI regions: one
needs to cut them off, but Nel þ Ninel is the total number of
hadronic events, so one must compensate somehow for that
cut. The second problem comes from the fact that part of
the inelastic events (such as N� production) will escape the
detector. The third problem, which we shall address here,
concerns the extrapolation of dN=dt from a minimum jtj
far away from the CNI region to t ¼ 0.

To simulate this analysis, we take Nel þ Nin ¼ n�tot,
and let n go from 0.9 to 1.1. We adopt the cuts planned
for the TOTEM experiment at the LHC, �t in
½0:03; 0:1� GeV2, so we are left with in 51 simulated data
points.
For the analysis at 2 TeV, if we take n ¼ 1, the depen-

dence of �tot over � will be comparable to that shown in
Fig. 2, but the errors on �tot will increase. For example, if
we fix � ¼ 0:15, then �tot ¼ 83:61� 0:44 mb. �tot

changes by 1.9 mb when � goes from 0.05 to 0.25. If n
can go as low as 0.95, then the measurement of �tot

increases, e.g., �tot ¼ 85:8 mb when � ¼ 0:15.
At

ffiffiffi
s

p ¼ 14 TeV, the changes are more pronounced, as
seen in Fig. 4. Cutting off the CNI region removes the
possibility to measure �. As the normalization is inversely
proportional to 1þ �2, it is rather obvious that if one
allows � to range from 0.05 [1] to 0.3, one will get a
10% change in �tot, which will only be added to the
uncertainty coming from the estimate of Nel þ Ninel. So
it seems to us that it is illusory to hope for an accuracy on
�tot better than 10% from this method.
The large discrepancy between the measurements of�tot

by CDF [14] and E710/E811 [16] probably has its origin in
the uncertainty on Nel þ Nin and on the dependence of �
and B on t, and not in some experimental mistake. Hence,
this large difference reflects the real error one is to expect
from this method.
Conclusion.—Our analysis shows that both methods in-

troduce large correlations between � and �tot. As it is very
likely that at the LHC unitarization will play an important
role, one should not assume that Bðs; tÞ and �ðs; tÞ are
constant with t, and their exact behavior with t is model-
dependent. Hence, the inescapable conclusion is that a 1%
measurement of �tot will be possible only if one measures
Bðs; tÞ and �ðs; tÞ as well.
jtj should go from very small values, as close as possible

to zero, to about 0:1 GeV2, with sufficiently small bins.
And it will be important to allow all parameters to vary.
Indeed, the measurement of � performed by UA4/2
(0:135� 0:015) [13] seemed to contradict that of UA4
(0:24� 0:02) [17] only because �tot was fixed. Allowing
�tot to be fitted to the data leads to an agreement between
the two measurements [18].
We also believe that the luminosity-dependent method is

preferable, as it uses more information. The measurement
of � performed at the Tevatron [19] used the luminosity-
independent method with very large bins in t, and the
interval considered was 0:00095 � jtj � 0:1431 GeV2.
On the lower side, one reached very small t, so that the
behavior of the amplitude cannot be taken as a single
exponential because of the CNI effect. On the upper side,
the intervals in t were too big to measure the specific
properties of the CNI region. Hence, the � parameter
extracted is very uncertain, and it could be that it varied
appreciably with t.

FIG. 4. �tot at
ffiffiffi
s

p ¼ 14 TeV with fixed normalization (n ¼ 1)
(central curve) and n ¼ 1� 0:1 (exterior curves). The diamond
indicates the input �tot and �ðs; 0Þ from which the data were
simulated.
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As the standard fitting procedure can give misleading
results, we remind the reader that additional methods have
been proposed to check the validity of the assumptions
entering the fits. First, it is possible to extract the value of
�ðs; tÞ at small but nonzero t [20,21], using the fact that the
Coulomb amplitude FCðtÞ has an opposite sign to that of
the real part of the pp amplitude FnðtÞ, so that there is a

value t ¼ tC for which FCðtCÞ ¼ �<eFnðtCÞ, so that the

differential cross section d�=dt has a local minimum. The
position of this minimum depends strongly on the form
assumed for �ðs; tÞ and extracting its value would show
whether � varies quickly with t or not. Using this method,
it was found in [20,21] that already at

ffiffiffi
s

p ¼ 52:8 GeV, �
was not constant with t.

It is also possible, at small jtj, to determine the elastic
hadronic cross section via an iterative method, which takes
advantage of the expression of the total elastic cross sec-
tion in the CNI region [22].

Finally, one can adapt a method that was first designed to
study eventual oscillations in d�=dt [23]. The idea is to
compare two statistically independent samples built by
binning the whole t range in small intervals, and by keep-
ing, e.g., one interval out of two. The deviations of the
experimental values from theoretical expectations,
weighted by the experimental error, are then summed for
each sample k,

�RkðtÞ ¼ X
jtij<jtj

½ðd�k=dtiÞexp � ðd�=dtiÞth�=�exp
i ; (3)

where �
exp
i is the experimental error. If the theoretical

curve does not precisely describe the experimental data
(for example, if the physical hadron amplitude does not
have an exactly exponential behavior with momentum
transfer), the sum �RkðtÞ will differ from zero, going
beyond the size of the statistical error.

Using these methods will help to test the assumptions
entering the future experimental analyses of TOTEM and
ATLAS and may lead to a much more reliable measure-
ment of � and �tot.
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