
Quantum Density Fluctuations in Classical Liquids

L.H. Ford*

Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA

N. F. Svaiter†

Centro Brasileiro de Pesquisas Fisicas-CBPF, Rua Dr. Xavier Sigaud 150 Rio de Janeiro, RJ, 22290-180, Brazil
(Received 10 September 2008; published 20 January 2009)

We discuss the density fluctuations of a fluid due to zero point motion, assuming a linear dispersion

relation. We argue that density fluctuations in a fluid can be a useful analog model for better understanding

fluctuations in relativistic quantum field theory. We calculate the differential cross section for light

scattering by the zero point density fluctuations, and find a result proportional to the fifth power of the light

frequency. We give some estimates of the relative magnitude of this effect compared to the scattering by

thermal density fluctuations, and find that it can be of the order 13% for liquid neon at optical frequencies.

This relative magnitude is proportional to frequency and inversely proportional to temperature. Although

the scattering by zero point density fluctuation is small, it may be observable.
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Zero point motion is a well established phenomenon,
both in condensed matter physics and relativistic quantum
field theory. One effect of the zero point motion of atoms is
that the Debye-Waller factor does not approach unity at
zero temperature, but is typically about 0.9 at low tempera-
ture [1]. This means that the intensity of x-ray diffraction
lines is reduced by approximately 10% as a result of atomic
zero point motion. In quantum field theory, an example of a
zero point phenomenon is the Casimir effect [2], the force
of attraction of bodies due to shifts in electromagnetic zero
point energy. There is an analog of the Casimir effect in
which zero point fluctuations of the phonon field in a fluid
also produce an analogous force [3]. Unfortunately, the
phononic analog is smaller than the electromagnetic effect
by the ratio of the speed of sound to the speed of light, and
is hence very small. Some authors have discussed the
possibility of an ‘‘acoustic Casimir’’ effect produced not
by zero point fluctuations, but rather by a thermal or
stochastic bath of sound [4,5]. Other authors have recently
discussed acoustic analogs of the Casimir effect in thin
films [6] and in Bose-Einstein condensates [7] or other
quantum liquids [8]. It has recently been argued that the
thermal effects in liquid helium may be large enough to
observe [9]. In the present Letter, we will be primarily
concerned with local density fluctuations in the phonon
vacuum state.

Here we consider the quantization of sound waves in a
fluid with a linear dispersion relation, �q ¼ cSq, where

�q is the phonon angular frequency, q is the magnitude of

the wave vector, and cS is the speed of sound in the fluid.
This should be a good approximation for phonon wave-
lengths much longer than the interatomic separation. Let
�0 be the mean mass density of the fluid. Then the variation
in density around this mean value is represented by a
quantum operator, �̂ðx; tÞ, which may be expanded in

terms of phonon annihilation and creation operators as [10]

�̂ðx; tÞ ¼ X
q

ðbqfq þ byqf�qÞ; (1)

where

fq ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
@!�0

2Vc2S

s
eiðq�x��qtÞ: (2)

Here V is a quantization volume. The normalization factor
in Eq. (2) can be fixed by requiring that the zero point
energy of each mode be 1

2 @�q and using the expression for

the energy density in a sound wave,

U ¼ c2S
�0

�̂2: (3)

In the limit in which V ! 1, we may write the density
correlation function as

h�̂ðx; tÞ�̂ðx0; t0Þi ¼ @�0

16�3c2S

Z
d3q�qe

iðq��x��q�tÞ; (4)

where �x ¼ x� x0 and �t ¼ t� t0. The integral may be
evaluated to write the coordinate space correlation function
as

h�̂ðx; tÞ�̂ðx0; t0Þi ¼ � @�0

2�2cS

�x2 þ 3c2S�t
2

ð�x2 � c2S�t
2Þ3 : (5)

This is of the same form as the correlation function for
the time derivative of a massless scalar field in relativistic
quantum field theory, h _’ðx; tÞ _’ðx0; t0Þi. Apart from a factor
of �0, these two quantities may be obtained from one
another by interchanging the speed of light c and the speed
of sound cS. If c ! cS, then

h _’ðx; tÞ _’ðx0; t0Þi ! �0h�̂ðx; tÞ�̂ðx0; t0Þi: (6)
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This relationship has been noted by previous authors, such
as Fedichev and Fischer [11]. Unruh [12] has shown that
the velocity potential �, of a moving fluid with velocity
v ¼ r�, satisfies the same equation as does a relativistic
scalar field in a curved spacetime.

In the limit of equal times, the density correlation func-
tion becomes

h�̂ðx; tÞ�̂ðx0; tÞi ¼ � @�0

2�2cSð�xÞ4
: (7)

Thus the density fluctuations increase as j�xj decreases.
Of course, the continuum description of the fluid and the
linear dispersion relation both fail as j�xj approaches the
interatomic separation. Also note the minus sign in Eq. (7).
This implies that density fluctuations at different locations
at equal times are anticorrelated. By contrast, when
cSj�tj> j�xj, then h�̂ðx; tÞ�̂ðx0; tÞi> 0 and the fluctua-
tions are positively correlated. This is in complete analogy
with the situation in the relativistic theory. Fluctuations
inside the light cone can propagate causally and tend to be
positively correlated. Fluctuations in a fluid for which
cSj�tj< j�xj cannot propagate causally from one point
to the other, and are anticorrelated. This can be understood
physically because an over density of fluid at one point in
space requires an under density at a nearby point.

Thus the quantum density fluctuations in a fluid can
serve as an analog model for fluctuations in quantum field
theory. The effect of boundaries on the density fluctuations
is similar to the effect of reflecting boundaries on the mean
squared electric and magnetic fields. The effects of various
types of boundaries on the density fluctuations is treated in
another paper [13], but as an example we here quote the
result for a planar boundary. At an impenetrable boundary,
the normal derivative of the fluid density must vanish. This
corresponds to a massless scalar field which satisfies
Neumann boundary conditions. We can define the shift in
the mean squared density, hð��Þ2iR as

hð��Þ2iR ¼ lim
�t!0;�x!0

½h�̂ðx; tÞ�̂ðx0; t0ÞiB
� h�̂ðx; tÞ�̂ðx0; t0Þi�; (8)

where h� � �iB denotes the correlation function in the pres-
ence of a boundary. At a distance z from a planar boundary,
we find

hð��Þ2iR ¼ � @�0

32�2cSz
4
: (9)

Note the minus sign, which indicates a reduction in fluc-
tuations near the boundary. This is analogous to the shift in
the mean squared electric and magnetic fields near a per-
fectly reflecting plate [14]

hE2i ¼ �hB2i ¼ 3@c

16�2z4
: (10)

(Electromagnetic quantities will be in Lorentz-Heaviside
units throughout this Letter.)
Next we turn to the question of whether these zero point

density fluctuations are observable. Two means of detect-
ing density fluctuations are by light scattering or by neu-
tron scattering. We consider only the former here. The
scattering of light by thermal fluctuations has been exten-
sively studied [15] in the past. One approach utilizes the
Maxwell equations with a fluctuating dielectric function.
Write the dielectric function of the fluid as � ¼ �0 þ �1,
with �0 being the mean dielectric constant of the fluid, and
�1 the fluctuating part. We assume that the dielectric
function is proportional to density, so we can write

�1ðx; tÞ ¼ �0
�0

�̂ðx; tÞ: (11)

One may then use results such as Eq. (1.68) of Ref. [15] to
obtain the scattering cross section. However, here we will
summarize a different approach which leads to the same
result.
Consider the quantized electromagnetic field in a non-

dispersive dielectric with dielectric constant �0. The
Hamiltonian may be written in terms of the electric and
magnetic fields as

H0 ¼ 1

2

Z
d3xð�0E2 þB2Þ: (12)

Here the electric field operator may be expanded in photon
annihilation and creation operators as

E ðx; tÞ ¼ X
k;�

ffiffiffiffiffiffiffiffiffiffiffi
@!

2V�0

s
½ak;�êk;�eiðk�x�!tÞ

þ ayk;�êk;�e
�iðk�x�!tÞ�; (13)

where êk;� are real polarization vectors and � labels linear

polarization states. Here

! ¼ cffiffiffiffiffi
�0

p k: (14)

Suppose that the electromagnetic field is coupled to the
dielectric fluctuations by the interaction Hamiltonian

H0 ¼ 1

2

Z
d3x�1ðx; tÞE2ðx; tÞ: (15)

We wish to calculate the amplitude for a photon in an
initial state ðk; �Þ to scatter into state ðk0; �0Þ with the
emission of a phonon into mode q. Thus the initial state
of the photonþ phonon system is jc ii ¼ j1k;�; 0qi, and
the final state is jc fi ¼ j1k0;�0 ; 1qi. We use first order

perturbation theory and write

hc fjH0jc ii¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@
3!!0�q

8V�0c
2
S

vuut ðêk;� � êk0;�0 Þ�k;k0þqe
ið!0þ�q�!Þt:

(16)
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The transition rate is given by the usual relation

W ¼ 2�

@
jhc fjH0jc iij�f; (17)

where the density of photon final states in energy is here
given by

�f ¼ Vð!0Þ2�ð3=2Þ0

@ð2�cÞ3 d� (18)

for scattering into the solid angle d�. The incident flux of
photons is given by c=ðV ffiffiffiffiffi

�0
p Þ. This leads to the result for

the scattering cross section of photons by zero point fluc-
tuations

�
d�

d�

�
ZP

¼ @!ð!0Þ3�qV�4

32�2c4c2S�0

ðêk;� � êk0;�0 Þ2; (19)

where V is the scattering volume and � ¼ ffiffiffiffiffi
�0

p
is the

fluid’s index of refraction. This relation may also be de-
rived from classical electromagnetic theory with a fluctu-
ating dielectric.

The conservation of energy and momentum require that

! ¼ !0 þ�q (20)

and that

k ¼ k0 þ q: (21)

The frequency of the created phonon, �q, is small com-

pared to the light frequency !, so that !0 � ! and one
may show that

�q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos	Þ

p cS
c
!; (22)

where 	 is the scattering angle. We can now write the cross
section as

�
d�

d�

�
ZP

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos	Þ

p @!5V�4

32�2c5cS�0

ðêk;� � êk0;�0 Þ2:
(23)

The !5 dependence of the scattering cross section can be
viewed as the product of the !4 dependence of Rayleigh-
Brillouin scattering and one power of �q, and hence of !,

coming from the spectrum of zero point fluctuations in the
fluid. Because light travels through the fluid at speeds
much greater than the sound speed, light scattering reveals
a nearly static distribution of density fluctuations. Thus we
can regard Eq. (23) as a probe of the fluctuations described
by Eq. (7).

The scattering by zero point fluctuations is inelastic,
with the creation of a phonon. Thus, the scattering de-
scribed by Eq. (23) is really Brillouin rather than
Rayleigh scattering. However, the result is similar to that
for Brillouin and Rayleigh scattering by thermal density
fluctuation in a fluid, for which the cross section at tem-
perature T is [see, for example, Eq. (8.3) of Ref. [15]]

�
d�

d�

�
T
¼ !4V kBT

16�2c4

�

S�

2
0

�
@�

@�0

�
2

S
þ T

�0CP

�
@�

@T

�
2

P

�

� ðêk;� � êk0;�0 Þ2: (24)

Here kB is Boltzmann’s constant, 
S is adiabatic com-
pressibility, and CP is the heat capacity per unit mass at
constant pressure. The subscripts S and P refer to deriva-
tives of the dielectric function at constant entropy and
constant pressure, respectively. The two terms on the
right-hand side of Eq. (24) have distinct physical interpre-
tations. The first gives the cross section for Brillouin
scattering, inelastic scattering involving either the emis-
sion or absorption of a phonon, leading to the Stokes and
anti-Stokes lines, respectively. The second term gives the
cross section for Rayleigh scattering. Because the scatter-
ing by zero point density fluctuations involves the emission
of a phonon, it will contribute to the Stokes line. Thus, we
should compare Eq. (23) with the Brillouin scattering cross
section

�
d�

d�

�
TB

¼ !4V kBT

16�2c4c2S�0

�
�0

�
@�

@�0

�
S

�
2ðêk;� � êk0;�0 Þ2;

(25)

where we have used the relation


S ¼ 1

�0c
2
S

: (26)

The ratio of the zero point and thermal Brillouin cross
sections can be written as

R � ðd�=d�ÞZP
ðd�=d�ÞTB

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos	Þ

p �
@!

2kBT

��
cS
c

�
�4

�
�0

�
@�

@�0

�
S

��2
: (27)

The index of refraction, �, and the quantity �0ð@�=@�0ÞS
are both typically of order unity, so R is primarily deter-
mined by the ratio of the photon energy to the thermal
energy, and the ratio of the speed of sound to the speed of
light.
For back scattering, cos	 ¼ �1, this ratio may be ex-

pressed as

R ¼ 1:4� 10�3

�
cS

1000 m=s

��
100 K

T

�

�
�
350 nm

�

�
�4

�
�0

�
@�

@�0

�
S

��2
: (28)

In many cases, R will be of the order 10�3 to 10�2, but can
be considerably larger. For dilute systems, the dielectric
function is approximately given by the Clausius-Mossotti
relation

� ¼ �2 ¼ 1þ �
�

m
; (29)
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where m and � are the molecular mass and polarizability,
respectively. This leads to

�0

�
@�

@�0

�
S
¼ �2 � 1: (30)

In Table I, we list the relevant parameters for several
liquids. Note that when data for �0ð@�=@�0ÞS are available,
there is good agreement with �2 � 1, with the exception of
water, where the diluteness assumption is least valid. In the
cases of argon and neon, we used Eq. (30), which should be
a good approximation.

As expected, the values of R obtained are of order 0.3%.
An exception is liquid neon, where the zero point effect is
about 13% of the thermal effect, which may be large
enough to observe. Even in cases such as water at room
temperature the effect is about 0.4%, which although small
in absolute terms, is surprisingly large for a quantum
effect. We have focused our attention on the case of clas-
sical liquids, However, the key assumption was the linear-
ity of the phonon dispersion relation. Hence, our analysis
should also hold for quantum liquids providing that this
assumption is valid. However, light scattering by a quan-
tum liquid such as HeII is complicated by the fact that
nonlinearity can be important. In addition, excitations such
as rotons can be significant. The same caution applies to
classical liquids at wavelengths shorter than optical. For
example, excitations of Ne2 molecules can occur at ultra-
violet wavelengths [19].

In summary, we have argued that the zero point density
fluctuations in a fluid are of interest both as an analog
model for fluctuations in relativistic quantum field theory,
and in their own right. These fluctuations are potentially
observable in light scattering experiments.
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TABLE I. Speed of sound, index of refraction and other data are given for several liquids,
along with the ratio R of zero point to thermal scattering. In all cases a wavelength of � ¼
350 nm was assumed. Data for the first four liquids are taken from Refs. [16,17]. Those for
argon and neon are from Ref. [18].

Liquid � cSðm=sÞ �2 � 1 �0ð @�@�0
ÞS TðKÞ R

Water 1.33 1480 0.96 0.79 300 0.0035

Ethanol 1.36 1160 0.85 0.87 300 0.0025

Ethyl ether 1.352 985 0.83 0.88 300 0.002

Methanol 1.328 1100 0.76 0.79 300 0.0026

Argon 1.23 860 0.575 � � � 85 0.01

Neon 1.093 630 0.195 � � � 25 0.13
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