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We derive monogamy relations (tradeoffs) between strengths of violations of Bell’s inequalities from

the nonsignaling condition. Our result applies to general Bell inequalities with an arbitrary large number

of partners, outcomes, and measurement settings. The method is simple, efficient, and does not require

linear programing. The results are used to derive optimal fidelity for asymmetric cloning in nonsignaling

theories.
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The nonsignaling principle—the impossibility of send-
ing information faster than the speed of light—is deeply
rooted in our existing understanding of the physical world.
It not only allows us to consider current physical theories
within a general framework of the nonsignaling principle,
but also to significantly restrict the structure of possible
future theories. This principle implies that the correlations
between distant partners cannot be used to send informa-
tion, as is the case for quantum correlations. Mathe-
matically, a correlation is defined as a joint probability
distribution Pða; bjx; yÞ, where a and b are outcomes of
two separated parties, say Alice and Bob, given x and y as
their free choices of measurement settings, respectively.
The nonsignaling condition implies that the marginals
are independent of the partner’s choice: Pðajx; yÞ ¼P

bPða; bjx; yÞ ¼ PðajxÞ.
Quantum theory predicts correlations between spacelike

separated events, which are nonsignaling but cannot be
explained within local realism, i.e., within the framework
in which all outcomes have preexisting values for any
possible measurement before the measurements are made
(‘‘realism’’) and where these values are independent from
any action at spacelike separated regions (‘‘locality’’) [1].
This is signified by the violation of Bell’s inequalities.
Since the work of Popescu and Rohrlich [2], it is known
that there are correlations violating Bell’s inequality
stronger than the quantum mechanical correlations, but
without contradicting the nonsignaling principle. This
opened up a possibility to investigate quantum correlations
outside of the Hilbert space formalism as well as correla-
tions in general probabilistic theories subject to the non-
signaling constraint [3–7].

The general framework for considering nonsignaling
correlations is also important from the information-
theoretical point of view. For example, protocols for a
secret key distribution were recently proposed and their
security proved solely using the nonsignaling principle
[8,9]. Furthermore, it was shown that every nonsignaling
theory that predicts the violation of Bell’s inequality im-
plies the no-cloning theorem. The bound on the shrinking

factor for the symmetric, phase-covariant cloning was
derived from the nonsignaling condition [5,10].
In this Letter, we will investigate monogamy properties

of correlations in nonsignaling theories. This property was
first found for quantum entanglement. Consider, for ex-
ample, three subsystems A, B, and C of a composite
quantum system. The theorem of Coffman, Kundu, and
Wootters describes the trade-off between the degree of
entanglement between A and B and the degree of entangle-
ment between A and C, as measured by concurrence [11–
14]. A similar tradeoff exits between the violation of the
Clauser-Horne-Shimony-Holt (CHSH) inequality for the
pair A-B and the violation of the inequality for the pair
A-C in any nonsignaling theory [5,15] (For the tradeoff
derived within quantum theory, see Ref. [16,17]). The
questions arise: Is the monogamy relation a generic feature
of every Bell inequality? What are constraints on quantum
correlations imposed by the nonsignaling condition? A
general, but only qualitative result was found [5]: If A
and B maximally violate some Bell inequality, then A
and C are completely uncorrelated. Furthermore, a linear
program was given for finding the nonsignaling bounds on
the quantum value of a general Bell expression [15].
Here, we derive the monogamy relations for the viola-

tion of general Bell’s inequalities in any nonsignaling
theory. It applies for an arbitrary number of parties, mea-
surement settings, and outcomes. The method is simple,
efficient, and does not require linear programing. To illus-
trate its applicability, we derive the optimal fidelity for
generally asymmetric cloning from the nonsignaling
bounds. The latter generalizes the results of Ref. [5]
Consider a general linear, two-partite Bell inequality, for

correlations of local outcomes observed at measurement
stations of Alice (A) and Bob (B),

B ðA; BÞ � X

x;y

X

a;b

�ðx; y; a; bÞPðAx ¼ a; By ¼ bÞ � R:

(1)

Here, x and y stand for the measurement settings chosen by
Alice and Bob, respectively, and a and b for the outcomes
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of their measurements. R is the local realistic bound and
PðAx ¼ a; By ¼ bÞ � Pða; bjx; yÞ is the conditional proba-
bility (both notations will be used in the present work).

Throughout this Letter, we will assume that every Bell
inequality is written in such a form that for all x, y, a, b,
one has�ðx; y; a; bÞ � 0. This guarantees thatBðA; BÞ � 0
and R � 0. To see that every inequality can be brought in
this form, note that each inequality which has some nega-
tive �’s can be rewritten by substituting probabilities
which are next to negative �’s by unity minus the proba-
bility of the opposite events. The chosen form simplifies
the formulas for Bell’s inequalities as no absolute values
need to be involved.

We now give the main result of our Letter. Consider nþ
1 separated parties, a single Alice (A) and a set of n Bobs

(Bð1Þ; . . . ;BðnÞ). Furthermore, consider a linear bipartite

Bell’s inequality BðA; BðmÞÞ � R of type (1), for measure-

ments of A and any single Bob BðmÞ, m 2 f1; . . . ; ng. The
number of outcomes at the two stations is arbitrary, as well
as the number of measurement settings at A. The number of

settings at each BðmÞ is assumed to be n, which is also the
total number of Bobs. The following monogamy relation
must hold between the strengths of violations of bipartite
Bell’s inequalities for n pairs of observers, each pair con-
sisting of Alice and single Bob:

Xn

m¼1

BðA; BðmÞÞ � nR: (2)

This holds in every nonsignaling theory, including these for

which individual Bell’s inequalitiesBðA; BðmÞÞ � R can be
violated, as it is the case in quantum theory (An analogous
result of Eq. (2) within quantum theory was found in
Ref. [18]).

The proof consists in showing that a violation of the
monogamy relation (2) would imply signaling. The left-

hand side of Ineq. (2) can be written as
P

n
m¼1 BðA; BðmÞÞ ¼P

n
m¼1 Bm, where

B m � X

x;y

X

a;b

�ðx; y; a; bÞPðAx ¼ a; Bðyþm�1modnÞ
y ¼ bÞ

(3)

involves a sum over all the settings of Alice and only one

setting for each Bob (see Fig. 1). Here, PðAx ¼
a; Bðyþm�1modnÞ

y ¼ bÞ is the probability that Alice observes
a and the (yþm� 1modn)-th Bob observes b, when she
chooses setting x and he setting y. If Ineq. (2) is violated,
then there exists at least one m for which

B m � R (4)

is violated. We show that violation of Ineq. (4) implies
signaling. We prove it for m ¼ 1; for other m values, the
proof is analogous. The Ineq. (4) for m ¼ 1 reads

B 1 �
X

x;y

X

a;b

�ðx; y; a; bÞPðAx ¼ a; BðyÞ
y ¼ bÞ � R; (5)

and is again a Bell’s inequality of type (1).
It is important to note that in the present setup, Bobs

do not change their measurement settings during the
Bell test and, furthermore, that they all can jointly per-

form their measurements. Thus, observer Bð1Þ always

performs measurement 1, and simultaneously Bð2Þ, per-
forms measurement 2 and so on. Let us introduce the joint

probability PðAx ¼ a; Bð1Þ
1 ¼ b1; . . . ; B

ðnÞ
n ¼ bnÞ that Alice

observes the outcome awhen she chooses the setting x, and
Bobs observe sequence of outcomes b1; . . . ; bn.

We write PðAx ¼ a; BðyÞ
y ¼ bÞ ¼ P0

b1;...;bn

PðAx ¼ a; Bð1Þ
1 ¼

b1; . . . ; B
ðyÞ
y ¼ b; . . . ; BðnÞ

n ¼ bnÞ, where P0
b1;...;bn

denotes the

sum over all indices b1; . . . ; bn except by. The Ineq. (5) can

now be brought into the form,

B1 ¼
X

x;a

X

b1;...;bn

�0ðx; a; b1; . . . ; bnÞ

� PðAx ¼ a; Bð1Þ
1 ¼ b1; . . . ; B

ðnÞ
n ¼ bnÞ � R; (6)

where �0ðx; a; b1; . . . ; bnÞ ¼ P
y�ðx; y; a; byÞ.
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FIG. 1 (color online). Diagram of measurements involved in
the Bell expression BðA;Bð1ÞÞ (top) and B1 (bottom). The
choices of the measurement settings are marked in red (online)
and by positions of the pointers (print). In the setup for
BðA;Bð1ÞÞ, both parties have a number of measurements to
(freely [21]) choose from. In the setup for B1 only Alice has
such a choice whereas each BðyÞ, y 2 f1; . . . ; ng always performs
the same measurement y.
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We introduce the short notation ~b � ðb1; . . . ; bnÞ
for the set of all outcomes that are observed by Bobs and

Pða; ~bjxÞ �PðAx ¼ a;Bð1Þ
1 ¼ b1; . . . ;B

ðyÞ
y ¼ b; . . . ;BðnÞ

n ¼ bnÞ
for the probability that Alice observes a and Bobs ~b condi-
tional on her choice of setting x. Recall that these proba-
bilities are not conditioned on the choice of the
measurement settings of Bobs since in the setup considered
(B1) all settings y are chosen simultaneously by different
Bobs. We now can rewrite Ineq. (6) as

B 1 ¼
X

x;a; ~b

�0ðx; a; ~bÞPða; ~bjxÞ � R: (7)

For every probability distribution, it is valid that

Pða; ~bjxÞ ¼ Pðaj ~b; xÞPð ~bjxÞ: (8)

The nonsignaling condition is the assumption that

Pð ~bjxÞ ¼ Pð ~bÞ; (9)

which allows to write Eq. (8) as

Pða; ~bjxÞ ¼ Pðaj ~b; xÞPð ~bÞ: (10)

It is crucial to realize that a probability distribution that
satisfies Eq. (10) is explainable within local realism. In a
local realistic model, the source sends particles carrying

information about the vector ~b with the probability Pð ~bÞ to
Alice and all Bobs. The measurement apparatuses of Bobs

output ~b while the apparatus of Alice takes the input x (the
setting chosen freely by Alice) and outputs a with the

probability Pðaj ~b; xÞ. This means that every value of the
left-hand side of Ineq. (7), which is attainable by any
nonsignaling theory, is also attainable by a local realistic
one. And since R is the maximal attainable value of the
left-hand side of Ineq. (7) this in turn means that a violation
of Ineq. (7) would allow Alice to signal to Bobs.

The extension to multipartite Bell’s inequalities is
straightforward. Consider Bell’s inequality

B ðPð1Þ; . . . ; PðNÞÞ � R (11)

where N parties PðiÞ, i 2 f1; . . . ; Ng, can choose between
an arbitrary number of measurement settings. We can al-

ways divide the parties into two sets and name these sets ~A

and ~B. We can now consider each of these two sets as one
party in a corresponding two-partite Bell’s inequality and

rewrite Ineq. (11) asBð ~A; ~BÞ � R. Each setting of ~A and ~B
corresponds to one of all the possible combinations of
settings of individual parties that form the set. Following
the proof given above, we can conclude: For every

N-partite Bell inequality BðPð1Þ; . . . ; PðNÞÞ � R and any

chosen division of the parties into two sets ~A and ~B, the
violation of

Xn

m¼1

�ð ~A; ~BðmÞÞ � nR; (12)

where n is the number of settings at each ~BðmÞ (the number

of the settings at ~A is arbitrary), implies signaling.
To illustrate the consequences of our result, we will

consider an asymmetric, state dependent cloning machine
(see Ref. [19] for a review on cloning) that takes a single
system of arbitrary dimension and produces n copies
(1 ! n cloning machine). We will derive the optimal
shrinking factor for the machine from our nonsignal-
ing inequalities (2). Consider a composite system consist-
ing of two subsystems belonging to A and B. The two
subsystems can be measured locally giving rise to the
probability distribution PðAx ¼ a; By ¼ bÞ (Fig. 2, top).

Alternatively, the subsystem of B can be sent to the cloning
machine which takes it as an input and outputs n ‘‘copies’’

that are further distributed to n observers BðmÞ, m 2
f1; . . . ; ng, and then measured locally in coincidence with
the subsystem of A. The ‘‘cloned’’ probability distribution

for local measurements on A and BðmÞ is denoted by

PðAx ¼ a; BðmÞ
y ¼ bÞ. Given an initial probability distribu-

FIG. 2. Diagram of measurements involved in a direct Bell test
between Alice and Bob (top) or the one between Alice and n
Bobs after the cloning procedure (bottom). While Alice chooses
between an arbitrary number of measurement settings, Bobs
choose between n of them. The nonsignaling condition gives
an upper bound of the shrinking factor for a general asymmetric
cloning procedure employed by Bobs.
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tion, which cloned probability distributions are in agree-
ment with the nonsignaling condition?

We now compare the strengths of the violation of Bell’s
inequality on an arbitrarily dimensional composite system
before and after the cloning procedure. Denote the Bell
expression in the experiment without cloning by BðA; BÞ.
Alice is assumed to choose between an arbitrary number of
measurement settings and Bob between n of them. Denote,
furthermore, the Bell expressions in the experiment with

cloning by BðA; BðmÞÞ, m 2 f1; . . . ; ng. Every such expres-
sion involves the cloned probability distribution between a

pair of observers A and BðmÞ, where A chooses among an

arbitrary number of measurement settings, and each BðmÞ
between n of them. We define the mean value of the
shrinking factor �m for each of the copies to be

�m ¼ BðA; BðmÞÞ
BðA; BÞ : (13)

The nonsignaling inequality (2) implies

Xn

m¼1

BðA; BðmÞÞ � nR; (14)

which transforms into

1

n

Xn

m¼1

�m � R

BðA; BÞ : (15)

Therefore, the bound on the mean value of the shrinking
factor for cloning is nontrivial, i.e., less than unity, only if
the initial probability distribution violates Bell’s inequality.
This generalizes the results of Ref. [5] obtained for the
symmetric cloning and n ¼ 2.

The bound derived with the use of the CHSH inequality
(n ¼ 2) is 1ffiffi

2
p and is, interestingly, shown to be saturated by

quantum mechanics [5]. Using our result every two-partite
Bell’s inequality which provides an upper bound on the
Grothendieck constant KGðdÞ for d-dimensional systems
and involves n settings at one of the parties (if the numbers
are different for different parties, any number can be taken)
gives a bound of 1

KGðdÞ on the shrinking factor of symmetric

1 ! n cloning machine. For example, the recent result [20]
provides us with stronger bounds on the shrinking factors
for the symmetric cloning of qubits for cloning machines
that make a very large number of copies (at least 1 ! 465).

In conclusion, we derive monogamy constraints on cor-
relations using only nonsignaling condition. Our results
can be applied to any Bell’s inequality, and in each case,

the constraints they give are easy to calculate. These con-
straints hold for every nonsignaling theory, quantum me-
chanics being a special case. This generalizes previously
known results which either were explicitly obtained for
only the CHSH inequality or gave only qualitative descrip-
tion of monogamy. We also have shown an exemplary
application of our results in finding a straightforward
way to derive bounds on shrinking factors of cloning
machines in any nonsignaling theory.
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