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Ordering of the three-dimensional Heisenberg spin glass with Gaussian coupling is studied by extensive

Monte Carlo simulations. The model undergoes successive chiral-glass and spin-glass transitions at

nonzero temperatures TCG > TSG > 0, exhibiting spin-chirality decoupling.
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The issue of spin-glass (SG) ordering has been studied
extensively for years, and continues to have an impact on
surrounding areas. Meanwhile, the original problem of the
magnetic ordering of typical spin-glass magnets, e.g., ca-
nonical SG, still remains elusive [1]. As magnetic inter-
actions in many SG materials are nearly isotropic, it is
important to elucidate the ordering properties of the three-
dimensional (3D) isotropic Heisenberg SG. Although ear-
lier numerical studies suggested that the 3D Heisenberg SG
exhibited only a T ¼ 0 transition [2,3], one of the present
authors (H.K.) suggested that the model might exhibit a
finite-temperature transition in its chiral sector [4].
Chirality is a multispin variable representing the handed-
ness of the noncollinear or noncoplanar structures induced
by frustration. It has subsequently been suggested that, in
the ordering of the 3D Heisenberg SG, the chirality was
‘‘decoupled’’ from the spin, the chiral-glass (CG) order
taking place at a temperature higher than the SG order,
TCG > TSG [5–7]. Based on such a spin-chirality decou-
pling picture of the 3D isotropic Heisenberg SG, a chirality
scenario of experimental SG transition was proposed [4,7]:
According to this scenario, the chirality is a hidden order
parameter of SG transition. Real SG transition of weakly
anisotropic SG magnets is then a ‘‘disguised’’ CG transi-
tion, where the chirality is mixed into the spin sector via a
weak random magnetic anisotropy.

Although the consensus in recent numerical studies now
appears to be that the 3D Heisenberg SG indeed exhibits a
finite-temperature transition [4–11], the nature of the tran-
sition, especially whether the model really exhibits the
spin-chirality decoupling, is still under hot debate.
Obviously, it is crucially important to clarify the ordering
of the 3D Heisenberg SG model.

By simulating the model of modest lattice sizes L � 20
(L being the linear dimension) but with a rather small
number of samples of Ns ¼ 32 (for their largest L),
Hukushima and Kawamura presented support for the
spin-chirality decoupling [6]. By contrast, Lee and Young
claimed on the basis of their data of the correlation-length
ratios �=L that the spin and the chirality order at a common
temperature, thus no spin-chirality decoupling [9,11].
Their data, however, suffer from either small lattice sizes

of only L � 12 [9] or a small number of samples of Ns ¼
56 [11]. Campos et al. simulated the same model to much
larger lattices L ¼ 32 with a larger number of samples
Ns ¼ 1000, but no data below Tg [10]. Campos et al.

claimed that the chiral and spin sectors undergo simulta-
neously a Kosterlitz-Thouless (KT) transition with massive
logarithmic corrections. This interpretation, however, was
criticized in Ref. [12].
Under such circumstances, we perform here a large-

scale Monte Carlo (MC) simulation of the 3D
Heisenberg SG in order to shed further light on the nature
of its spin and chirality ordering. We exceed the previous
simulations by simulating the system as large as L ¼ 32 to
temperatures considerably lower than Tg for large number

of samples of order Ns ’ 103. Note that none of the pre-
vious simulations satisfied all these criteria simultaneously.
More importantly, we calculate several independent physi-
cal quantities including the correlation-length ratios, the
Binder ratios and the glass order parameters, trying to draw
a consistent picture from these independent quantities,
whereas Refs. [9–11] concentrated almost exclusively on
the correlation-length ratio. Our simulation then enabled us
to conclude that the SG transition occurs at a nonzero
temperature which is located about 15% below the CG
transition temperature. Thus, the 3D Heisenberg SG cer-
tainly exhibits the spin-chirality decoupling.
The model is the isotropic classical Heisenberg model

on a 3D simple cubic lattice with the nearest-neighbor
Gaussian coupling. The Hamiltonian is given by

H ¼ �X
hiji

Jij ~Si � ~Sj; (1)

where ~Si ¼ ðSxi ; Syi ; Szi Þ is a three-component unit vector at
the ith site, and the hiji sum is taken over nearest-neighbor
pairs. The coupling Jij are random Gaussian variables with

zero mean and the variance J2.
The local chirality at the ith site and in the�th direction

�i� may be defined for three neighboring Heisenberg spins

by the scalar

�i� ¼ ~Siþê� � ð ~Si � ~Si�ê�Þ; (2)
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where ê�ð� ¼ x; y; zÞ denotes a unit vector along the �th

axis. There are in total 3N local chiral variables.
The lattice contains N ¼ L3 sites with L ¼ 6, 8, 12, 16,

24, 32 with periodic boundary conditions. The sample
average is taken over 2000 (L ¼ 6, 8, 12), 1500 (L ¼
16), 1000 (L ¼ 24) and 800 (L ¼ 32) bond realizations.
To facilitate efficient thermalization, we employ the single-
spin-flip heat-bath and over-relaxation method [10], �
rotation of spin around the internal-field axis, combined
with the temperature-exchange technique [13]. Over-
relaxation sweep is repeated L times per every heat-bath
sweep, which constitutes our unit MC step. In the case of
our largest L ¼ 32, we generate 3� 105 MC steps for 48
temperature points, half of which are discarded for
thermalization.

Care is taken to make sure that the system is fully
equilibrated. Equilibration is checked by the following
procedures. First, we monitor the system to travel back
and forth many times along the temperature axis during the
temperature-exchange process (typically more than 10
times) between the maximum and minimum temperatures,
while we also check that the relaxation due to the single-
spin-flip updating is fast enough at the highest temperature.
This guarantees that different parts of the phase space are
sampled in each ‘‘cycle’’ of the temperature-exchange run.
Second, we follow Ref. [14] and check the equality ex-
pected to hold for the model with Gaussian coupling.
Third, we check the stability of the results against at least
3 times longer runs for a subset of samples. Fourth, we
compare the data of the correlation-length ratios with the
recent data by other authors in the temperature range where
common data are available [10,11]. Error bars are esti-
mated by the sample-to-sample statistical fluctuations.

We run two independent systems (1) and (2), and calcu-
late a k-dependent overlap. For the chirality, the

k-dependent chiral overlap q�ð ~kÞ is defined by the scalar,

q�ð ~kÞ ¼ 1

3N

XN
i¼1

X
�¼x;y;z

�ð1Þ
i��

ð2Þ
i�e

i ~k�~ri ; (3)

whereas, for the spin, it is defined by the tensor q��ð ~kÞ
between the � and � components of the Heisenberg spin,

q��ð ~kÞ ¼ 1

N

XN
i¼1

Sð1Þi� S
ð2Þ
i� e

i ~k� ~ri ; ð�;� ¼ x; y; zÞ: (4)

The CG and SG order parameters are defined by the second
moment of the k ¼ 0 component of the overlap,

qð2ÞCG ¼ ½hq�ð~0Þ2i�; (5)

qð2ÞSG ¼ ½hqsð~0Þ2i�; qsð ~kÞ2 ¼
X

�;�¼x;y;z

jq��ð ~kÞj2; (6)

where h� � �i represents the thermal average and [ � � � ] the
average over the bond disorder. The chiral and spin Binder
ratios are defined by

gCG ¼ 1

2

�
3� ½hq�ð~0Þ4i�

½hq�ð~0Þ2i�2
�
; (7)

gSG ¼ 1

2

�
11� 9

½hqsð~0Þ4i�
½hqsð~0Þ2i�2

�
: (8)

Note that both gCG and gSG are normalized so that they
vanish in the high-temperature phase for L ! 1 and give
unity in the nondegenerate ground state as expected for the
present Gaussian coupling.
The finite-size correlation lengths are given by [9]

� ¼ 1

2 sinðkm=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½hqð~0Þ2i�
½hqð ~kmÞ2i�

� 1

vuut ; (9)

for each case of the chirality and the spin, �CG and �SG,

where ~km ¼ ð2�=L; 0; 0Þ with km ¼ j ~kmj, and the � direc-

tion in Eq. (2) is taken here as being parallel with ~k.
In Fig. 1, we show the correlation-length ratios for

the chirality �CG=L [Fig. 1(a)], and for the spin �SG=L

L=32
L=24
L=16

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.135  0.14  0.145  0.15  0.155  0.16

ξ C
G

/L

T/J

TCG

(a)L=12
L=8
L=6

L=32
L=24
L=16

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.135  0.14  0.145  0.15  0.155  0.16

ξ S
G

/L

T/J

TCG

(32,24)

(24,16)

(16,12)

(12,8)

(b)
L=12

L=8
L=6

FIG. 1 (color online). The temperature and size dependence of
the correlation-length ratio for the chirality (a), and for the
spin (b). The arrow indicates the bulk chiral-glass transition
point.

PRL 102, 027202 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

16 JANUARY 2009

027202-2



[Fig. 1(b)]. While the chiral �CG=L curves cross at tem-
peratures which are only weakly L dependent, the spin
�SG=L curves cross at progressively lower temperatures as
L increases. The �=L data are compared with the data by
other authors as follows: Our data for �=L are in full
agreement with those of Ref. [10] within statistical error
bars over the narrow and relatively high-temperature range
covered by their data. The data of Ref. [11] for their largest
L (on which their claim for ‘‘merging’’ was based) are
lower than our present ones and those of Ref. [10] by about
5 to 6 of our � units; this may be a purely statistical effect
in view of the limited number of samples measured in
Ref. [11].

To estimate the bulk CG and SG transition temperatures
quantitatively, we plot in Fig. 2 the crossing temperature of
�CG=L and �SG=L for pairs of successive L values versus
1=Lav, where Lav is a mean of the two sizes. The data show
an almost linear 1=Lav dependence. The chiral crossing
temperature exhibits a weaker size dependence, and is
extrapolated to TCG ¼ 0:145� 0:004 (in units of J), while
the spin crossing temperature exhibits a stronger size de-
pendence extrapolated to TSG ¼ 0:120� 0:006. Hence,
TSG is lower than TCG by about 15%. For our �=L data,
we also tried a KT scaling with a logarithmic correction as
was done in Ref. [10]. KT-like scaling can be ruled out,

however, when our lower temperature �CG=L and �SG=L
data, which were not available to Ref. [10], are included.
This is particularly clear for �CG=L data where the curves
are not ‘‘merging’’ [10] nor ‘‘marginal’’ [11], but splay out
below TCG.
The Binder ratios are shown in Fig. 3 for the chirality

[Fig. 3(a)], and for the spin [Fig. 3(b)]. The chiral Binder
ratio gCG exhibits a negative dip which deepens with
increasing L. The data of different L cross on the negative
side of gCG. These features indicate a finite-temperature
transition in the chiral sector. By extrapolating the dip
temperature Tdip and the crossing temperature Tcross for

pairs of successive L values to L ¼ 1, TCG is estimated to
be TCG ¼ 0:145� 0:005: See Fig. 2. The estimated TCG is
fully consistent with the one estimated above from �CG=L.
The peculiar form of gCG with a negative dip, together with
a prominent central peak observed at q� ¼ 0 in the calcu-

lated chiral-overlap distribution below TCG (not shown
here) similar to the one reported in Refs. [5,6], is consistent
with the occurrence of a one-step-like replica-symmetry
breaking as suggested by Hukushima and Kawamura [5,6].
In any case, the origin of the peculiar behavior of g, as well
as the true nature of the CG ordered state, requires further
clarification.
By contrast, the corresponding spin Binder ratio gSG

does not exhibit crossing nor merging in the temperature
range studied, suggesting that the SG transition tempera-
ture, if any, occurs below T ’ 0:12. Meanwhile, as the size
L is increased, gSG develops more and more singular form
at low temperature, indicating that the associated overlap
distribution significantly changes its shape at low tempera-
ture. If one recalls the fact that gSG takes a value unity at
T ¼ 0, gSG is expected to develop a negative dip at a lower
T (of & 0:12) accompanied by an upturn toward T ¼ 0.
This feature of gSG suggests the occurrence of a SG tran-
sition at a nonzero temperature, TSG & 0:12.
Pixley and Young recently criticized that the Binder

ratio might not be an appropriate quantity in studying
the ordering of vector SG, arguing that the large number
of the order-parameter components (n ¼ 32 ¼ 9 in the
Heisenberg SG) might lead to a trivial Gaussian distribu-
tion even below Tg [15]. To check the validity of such an

expectation, we calculate the Binder ratio g of a simple 3D
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FIG. 3 (color online). The temperature and size dependence of
the Binder ratio for the chirality (a), and for the spin (b). The
arrow indicates the bulk chiral-glass transition point.
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extrapolation of the data, the spin-glass and chiral-glass transi-
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TSG ¼ 0:120� 0:006. The inset exhibits a wider range.
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OðnÞ ferromagnet with large n ¼ 6 [16] or 10 [17], but
have observed that g exhibits a clear crossing behavior at
Tc characteristic of the standard long-range ordered phase,
quite different from the one of Fig. 3(b). This result
presents counterexamples to the criticism of Ref. [15],
demonstrating that the peculiar behavior of gSG observed
here in Fig. 3(b) should be regarded as a manifestation of
essential features of the SG ordering, not merely an artifact
due to the large number of n.

In Fig. 4, we show the size dependence of the CG and
SG order parameters on a log-log plot. As can be seen from

Fig. 4(a), qð2ÞCG exhibits a linear behavior at a temperature

T ¼ 0:148, an upward curvature characteristic of a long-
rage ordered state at lower T, and a downward curvature at
higher T which should eventually tend to a linear behavior
with a slope equal to �d ¼ �3 in the disordered phase.

Thus, the data of qð2ÞCG are consistent with a CG transition

occurring at TCG ¼ 0:148� 0:005, consistently with the
results of �CG=L and gCG.

The SG order parameter qð2ÞSG exhibits a significantly

different behavior; i.e., it exhibits a downward curvature
characteristic of a disordered state at T ¼ 0:148 ’ TCG, or
even at T ¼ 0:133< TCG. At our lowest temperature
T=J ¼ 0:121 where we could equilibrate only smaller
lattices of L � 16, the data exhibit a near linear behavior
up to L ¼ 16, although it is not clear whether this linear

behavior extends to larger L. Thus, our data of qð2ÞSGðLÞ are
consistent with a SG transition occurring at TSG & 0:13,

whereas, from the present data of qð2ÞSG only, we cannot rule

out the possibility that TSG is significantly lower than this.

We note that our conclusion TSG < TCG on the basis of qð2Þ
is quite robust against the inclusion of the correction-to-
scaling term [18].

From our data of �CG=L and qð2ÞCG, CG critical exponents

are estimated to be �CG ¼ 1:4� 0:2 and 	CG ¼ 0:6� 0:2.
Although a reliable estimate of the corresponding SG
exponents is difficult due the remaining uncertainty in

TSGð& 0:12Þ, our data of qð2ÞSG in Fig. 4(b) enable us to

conclude 	SG & �0:37, which definitely differs from the
CG 	CG value. Further details will be given elsewhere.

All the physical quantities studied here, including the
correlation-length ratio, the Binder ratio and the glass order
parameter, consistently indicate that the 3D Heisenberg SG
with Gaussian coupling exhibits successive CG and SG
transitions at TCG ¼ 0:145� 0:004 and at TSG & 0:12.
The SG order sets in at a temperature that is at least about
15% below the CG order, hence, the occurrence of the
spin-chirality decoupling. One may feel that the relative
distance between TCG and TSG is not so large, but, in fact, it
is a sizable difference, much larger than the one observed
in other systems exhibiting the spin-chirality decoupling;
e.g., the 2D regular frustrated XY model where the differ-
ence is known to be about 1% [19,20]. While the SG order
in the 3D Heisenberg SG occurs at nonzero temperature, as

is consistent with the recent numerical works [8–11], it
should be stressed that whether TSG is zero or nonzero is
irrelevant to the chirality scenario of Refs. [4,7] as long as
the spin-chirality decoupling occurs, i.e., TSG < TCG. Our
present result then supports the chirality scenario of SG
transition.
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